Advertisement

Vietnam Journal of Mathematics

, Volume 45, Issue 1–2, pp 77–102 | Cite as

Analysis and Upscaling of a Reactive Transport Model in Fractured Porous Media with Nonlinear Transmission Condition

  • Iuliu Sorin PopEmail author
  • Jeroen Bogers
  • Kundan Kumar
Article

Abstract

We consider a reactive transport model in a fractured porous medium. The particularity appears in the conditions imposed at the interface separating the block and the fracture, which involves a nonlinear transmission condition. Assuming that the fracture has thickness ε, we analyze the resulting problem and prove the convergence toward a reduced model in the limit ε↘0. The result is a model defined on an interface (the reduced fracture) and acting as a boundary condition for the equations defined in the block. Using both formal and rigorous arguments, we obtain the reduced models for different flow regimes, expressed through a moderate or a high Péclet number.

Keywords

Fractured porous media Upscaling Reactive transport Nonlinear transmission conditions 

Mathematics Subject Classification (2010)

35B45 35D30 35K57 65M12 76M45 76M50 

Notes

Acknowledgments

ISP and KK are members of the International Research Training Group NUPUS funded by the German Research Foundation DFG (GRK 1398), the Netherlands Organization for Scientific Research NWO (DN 81-754) and by the Research Council of Norway (215627). They also acknowledge the Akademia grant supporting this work. Also, the work of ISP is supported by the Shell-NWO/FOM CSER programme (project 14CSER016). We thank Prof. M. van Sint Annaland (Eindhoven) for the discussions about the nonlinear transmission conditions in the context of reactive flows. Also, we are grateful to the anonymous referees for their valuable suggestions and the critical reading. Last but not least we thank Prof. W. Jäger (Heidelberg) for stimulating discussions, guidance and continuous support.

References

  1. 1.
    Ahmed, E., Jaffré, J., Roberts, J.E.: A reduced fracture model for two-phase flow with different rock types. Math. Comput. Simul. (submitted)Google Scholar
  2. 2.
    Allaire, G., Brizzi, R., Mikelić, A., Piatnitski, A.: Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media. Chem. Eng. Sci. 65, 2292–2300 (2010)CrossRefGoogle Scholar
  3. 3.
    Allaire, G., Hutridurga, H.: Homogenization of reactive flows in porous media and competition between bulk and surface diffusion. IMA J. Appl. Math. 77, 788–815 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Allaire, G., Mikelić, A., Piatnitski, A.: Homogenization approach to the dispersion theory for reactive transport through porous media. SIAM J. Math. Anal. 42, 125–144 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berninger, H., Loisel, S., Sander, O.: The 2-Lagrange multiplier method applied to nonlinear transmission problems for the Richards equation in heterogeneous soil with cross points. SIAM J. Sci. Comput. 36, A2166–A2198 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bogers, J.J.P.: Transport in Fractured Media: Well-posedness, upscaling and numerical schemes for problems involving a nonlinear transmission condition. MSc thesis, Eindhoven University of Technology (2011)Google Scholar
  7. 7.
    Bogers, J.J.P., Kumar, K., Notten, P.H.L., Oudenhoven, J.F.M., Pop, I.S.: A multiscale domain decomposition approach for chemical vapor deposition. J. Comput. Appl. Math. 246, 65–73 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bringedal, C., Berre, I., Pop, I.S., Radu, F.A.: Upscaling of non-isothermal reactive porous media flow with changing porosity. Transp. Porous Med. (2015). doi: 10.1007/s11242-015-0530-9
  9. 9.
    Cancès, C.: Finite volume scheme for two-phase flows in heterogeneous porous media involving capillary pressure discontinuities. ESAIM Math. Model. Numer. Anal. 43, 973–1001 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cancès, C., Pierre, M.: An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. SIAM J. Math. Anal. 44, 966–992 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Devigne, V.M., Pop, I.S., Van Duijn, C.J., Clopeau, T.: A numerical scheme for the pore-scale simulation of crystal dissolution and precipitation in porous media. SIAM J. Numer. Anal. 46, 895–919 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Van Duijn, C.J., Cao, X., Pop, I.S.: Two-phase flow in porous media: dynamic capillarity and heterogeneous media. Transp. Porous Med. (2015). doi: 10.1007/s11242-015-0547-0
  13. 13.
    Van Duijn, C.J., Mikelić, A., Pop, I.S., Rosier, C.: Effective dispersion equations for reactive flows with dominant Péclet and Damköhler numbers. Mathematics in Chemical Kinetics and Engineering, Book Series: Advances in Chemical Engineering 34, 1–45 (2008)Google Scholar
  14. 14.
    Van Duijn, C.J., Molenaar, J., De Neef, M.J.: The effect of capillary forces on immiscible two-phase flow in heterogeneous porous media. Transp. Porous Med. 21, 71–93 (1995)CrossRefGoogle Scholar
  15. 15.
    Van Duijn, C.J., Pop, I.S.: Crystal dissolution and precipitation in porous media: pore scale analysis. J. Reine. Angew. Math. 577, 171–211 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Fatima, T., Ijioma, E.R., Ogawa, T., Muntean, A.: Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Netw. Heterog. Media 9, 709–737 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jäger, W., Kutev, N.: Discontinuous Solutions of the Nonlinear Transmission Problem for Quasilinear Elliptic Equations. IWR Preprint 1998–22, Universität Heidelberg (1998)Google Scholar
  18. 18.
    Jäger, W., Mikelić, A.: On the interface boundary conditions by Beavers, Joseph and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Jäger, W., Mikelić, A., Neuß, N.: Asymptotic analysis of the laminar viscous flow over a porous bed. SIAM J. Sci. Comput. 22, 2006–2028 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jäger, W., Simon, L.: On transmission problems for nonlinear parabolic differential equations. Ann. Univ. Sci. Budapest 45, 143–158 (2002)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kacur, J.: Method of Rothe in Evolution Equations. Springer, Berlin–Heidelberg (1986)zbMATHGoogle Scholar
  22. 22.
    Kellogg, R.B., Osborn, J.E.: A regularity result for the Stokes problem in a convex polygon. J. Funct. Anal. 21, 397–431 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kumar, K., Neuss-Radu, M., Pop, I.S.: Homogenization of a pore scale model for precipitation and dissolution in porous media. arXiv:1401.7025(2014)
  24. 24.
    Kumar, K., Van Noorden, T.L., Pop, I.S.: Effective dispersion equations for reactive flows involving free boundaries at the microscale. Multiscale Model Simul. 9, 29–58 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kumar, K., Van Noorden, T., Pop, I.S.: Upscaling of reactive flows in domains with moving oscillating boundaries. Discrete Contin. Dyn. Sys. Ser. S 7, 95–111 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kweon, J.R., Kellogg, R.B.: Compressible Stokes problem on nonconvex polygonal domains. J. Differ. Equ. 176, 290–314 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lenzinger, M., Schweizer, B.: Two-phase flow equations with outflow boundary conditions in the hydrophobic–hydrophilic case. Nonlinear Anal. TMA 73, 840–853 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Mikelić, A., Devigne, V., Van Duijn, C.J.: Rigorous upscaling of the reactive flow through a pore, under dominant Péclet and Damkohler numbers. SIAM J. Math. Anal. 38, 1262–1287 (2006)CrossRefzbMATHGoogle Scholar
  29. 29.
    Muntean, A., Neuss-Radu, M.: A multiscale Galerkin approach for a class of nonlinear coupled reaction–diffusion systems in complex media. J. Math. Anal. Appl. 371, 705–718 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Musuuza, J.L., Radu, F.A., Attinger, S.: The effect of dispersion on the stability of density-driven flows in saturated homogeneous porous media. Adv. Water Resour. 34, 417–432 (2011)CrossRefGoogle Scholar
  31. 31.
    Neuss-Radu, M., Ludwig, S., Jäger, W.: Multiscale analysis and simulation of a reaction-diffusion problem with transmission conditions. Nonlinear Anal. RWA 11, 4572–4585 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Neuss-Radu, M., Jäger, W.: Effective transmission conditions for reaction-diffusion processes in domains separated by an interface. SIAM J. Math. Anal. 39, 687–720 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Van Noorden, T.L.: Crystal precipitation and dissolution in a thin strip. Eur. J. Appl. Math. 20, 69–91 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Van Noorden, T.L., Pop, I.S., Ebigbo, A., Helmig, R.: An upscaled model for biofilm growth in a thin strip. Water Resour. Res. 46, W06505 (2010)CrossRefGoogle Scholar
  35. 35.
    Simon, J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. 146, 65–96 (1986)CrossRefGoogle Scholar
  36. 36.
    Simon, L.: Application of Monotone Type Operators to Parabolic and Functional Parabolic PDEs. In: Dafermos, C.M., Pokorny, M. (eds.) Handbook of Differential Equations: Evolutionary Equations, Vol. 4, pp. 267–322. Elsevier (2008)Google Scholar
  37. 37.
    Lyu, Z., Zhou, T., Chen, L., Ye, Y., Sundmacher, K., Qi, Z.: Simulation based ionic liquid screening for benzene-cyclohexane extractive separation. Chem. Eng. Sci. 113, 45–53 (2014)CrossRefGoogle Scholar
  38. 38.
    Taylor, G.: Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186–203 (1953)CrossRefGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Iuliu Sorin Pop
    • 1
    • 3
    Email author
  • Jeroen Bogers
    • 2
  • Kundan Kumar
    • 3
  1. 1.Faculty of Sciences, Campus Diepenbeek, Agoralaan - gebouw DHasselt UniversityDiepenbeekBelgium
  2. 2.ASML Netherlands B.V.VeldhovenThe Netherlands
  3. 3.Department of MathematicsUniversity of BergenBergenNorway

Personalised recommendations