Vietnam Journal of Mathematics

, Volume 45, Issue 1–2, pp 5–49

# Differential Equations for Closed Sets in a Banach Space

Survey and Extension
• Thomas Lorenz
Article

## Abstract

Nonempty subsets of a vector space suggest themselves for describing shapes (without restrictions of regularity) or states (together with their deterministic uncertainty). Hence, there have been developed several suggestions how to extend differential and integral equations respectively to time-dependent subsets although subsets do not form a linear space in an obvious way. In this article, we summarize three central approaches which can handle possibly non-convex closed subsets: integral funnel solution (a.k.a. R-solutions), morphological primitives, and reachable sets (generalizing Aumann integrals). They are extended to a separable Banach space and characterized by means of semilinear evolution inclusions.We formulate conditions sufficient for the equivalence of these generalized concepts and, then this joint basis is used for specifying differential equations for closed (not necessarily convex or compact) subsets. Several further approaches in the literature prove to be special cases. In this purely metric setting, the counterpart of the Picard–Lindelöf theorem (a.k.a. Cauchy–Lipschitz theorem) ensures the existence and uniqueness of set-valued solutions to initial value problems.

## Keywords

Evolution inclusion in a Banach space Reachable set Integral funnel equation Morphological equation Set differential equation Set evolution equation

## Mathematics Subject Classification (2010)

34G25 34A60 49J27 49J53 93B03 37B55 28B20 45N05

## Notes

### Acknowledgements

Prof. Willi Jäger was my academic teacher at Heidelberg University from my very first semester until the habilitation. Infected by the “virus” of analysis, I enjoyed following his courses, full of insights into mathematical relations between diverse fields. As a part of his scientific support, he drew my attention to set-valued maps quite early and gave me the opportunity to gain research experience very autonomously. Consequences of his initial inspirations almost 20 years ago are still reflected in this article. Hence, I would like to express my deep gratitude to Prof. Jäger.

Some of the results presented here were developed in connection with a research stay at University Paris 1 Panthéon-Sorbonne. I thank Prof. Joël Blot and Prof. Georges Haddad for their invitation and the hospitality. Last, but not least I would also like to express my gratitude to Prof. Jean-Pierre Aubin especially for the interesting discussions opening me new perspectives how the notions of viability theory and mutational analysis can be applied beyond maths.

## References

1. 1.
Agarwal, R.P., O’Regan, D.: Existence for set differential equations via multivalued operator equations. In: Differential Equations and Applications, vol. 5, pp 1–5. Nova Science Public, New York (2007)Google Scholar
2. 2.
Aletti, G., Bongiorno, E.G.: A decomposition theorem for fuzzy set-valued random variables. Fuzzy Sets Syst. 219, 98–112 (2013)
3. 3.
Aletti, G., Bongiorno, E.G., Capasso, V.: Integration in a dynamical stochastic geometric framework. ESAIM Probab. Stat. 15, 402–416 (2011)
4. 4.
Artstein, Z.: First-order approximations for differential inclusions. Set-Valued Anal. 2, 7–17 (1994). Set convergence in nonlinear analysis and optimization
5. 5.
Artstein, Z.: A calculus for set-valued maps and set-valued evolution equations. Set-Valued Anal. 3, 213–261 (1995)
6. 6.
Aubin, J. -P.: A note on differential calculus in metric spaces and its applications to the evolution of tubes. Bull. Polish Acad. Sci. Math. 40, 151–162 (1992)
7. 7.
Aubin, J. -P.: Mutational equations in metric spaces. Set-Valued Anal. 1, 3–46 (1993)
8. 8.
Aubin, J. -P.: Mutational and Morphological Analysis. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston (1999). Tools for shape evolution and morphogenesis
9. 9.
Aubin, J.-P.: Time and Money. Lecture Notes in Economics and Mathematical Systems, vol. 670. Springer, Cham (2014). How long and how much money is needed to regulate a viable economyGoogle Scholar
10. 10.
Aubin, J.-P., Bayen, A.M., Saint-Pierre, P.: Viability Theory, 2nd edn. Springer, Heidelberg (2011). New directions
11. 11.
Aubin, J.-P., Cellina, A.: Differential Inclusions. Grundlehren Der Mathematischen Wissenschaften, vol. 264. Springer, Berlin (1984). Set-valued maps and viability theoryGoogle Scholar
12. 12.
Aubin, J.-P., Frankowska, H.: Set-Valued Analysis. Systems & Control: Foundations & Applications, vol. 2. Birkhäuser Boston Inc., Boston (1990)Google Scholar
13. 13.
Aubin, J.-P., Murillo Hernández, J.A.: Morphological equations and sweeping processes. In: Nonsmooth Mechanics and Analysis. Advance Mechanics Mathematics, vol. 12, pp 249–259. Springer, New York (2006)Google Scholar
14. 14.
Beer, G.: Topologies on Closed and Closed Convex Sets Mathematics and its Applications, vol. 268. Kluwer Academic Publishers Group, Dordrecht (1993)Google Scholar
15. 15.
Bressan, A.: On the cauchy problem for systems of conservation laws. In: Actes Du 29ème Congrès D’analyse Numérique: CANum’97 (Larnas, 1997). ESAIM Proceedings, vol. 3, pp. 23–36 (Electronic). Society Mathematics Application Industry, Paris (1998)Google Scholar
16. 16.
Bressan, A.: On the Cauchy problem for nonlinear hyperbolic systems. Preprint ISAS-m–97-97 (1998)Google Scholar
17. 17.
Calcaterra, C., Bleecker, D.: Generating flows on metric spaces. J. Math. Anal. Appl. 248, 645–677 (2000)
18. 18.
Castaing, C.H.: Sur les multi-applications mesurables. Rev. Française Informat. Recherche Opérationnell 1, 91–126 (1967)
19. 19.
Céa, J.: Une Méthode Numérique Pour La Recherche D’un Domaine Optimal. In: Computing Methods in Applied Sciences and Engineering (Second Internat. Symposium., Versailles, 1975), Part 1, pp. 245–257. Lecture Notes in Econom. and Math. Systems, vol. 134. Springer, Berlin (1976)Google Scholar
20. 20.
Colombo, R.M., Corli, A.: A semilinear structure on semigroups in a metric space. Semigroup Forum 68, 419–444 (2004)
21. 21.
Colombo, R.M., Corli, A.: On the operator splitting method: nonlinear balance laws and a generalization of Trotter–Kato Formulas. In: Hyperbolic Problems and Regularity Questions. Trends Mathematics, pp 91–100. Basel, Birkhäuser (2007)Google Scholar
22. 22.
Colombo, R.M., Guerra, G.: Balance laws as quasidifferential equations in metric spaces. In: Tadmor, E., Liu, J.-G., Tzavaras, A. (eds.) Hyperbolic Problems: Theory, Numerics and Applications. Proceedings Symposium Application Mathematics, vol. 67, pp 527–536. Amer. Math. Soc., Providence, RI (2009)Google Scholar
23. 23.
Colombo, R.M., Guerra, G.: Differential equations in metric spaces with applications. Discret. Contin. Dyn. Syst. 23, 733–753 (2009)
24. 24.
Colombo, R.M., Lorenz, T., Pogodaev, N.I.: On the modeling of moving populations through set evolution equations. Discret. Contin. Dyn. Syst. 35, 73–98 (2015)
25. 25.
Colombo, R.M., Pogodaev, N.: Confinement strategies in a model for the interaction between individuals and a continuum. SIAM J. Appl. Dyn. Syst. 11, 741–770 (2012)
26. 26.
Colombo, R.M., Pogodaev, N.: On the control of moving sets: positive and negative confinement results. SIAM J. Control Optim. 51, 380–401 (2013)
27. 27.
De Blasi, F.S.: Banach–Saks–Mazur and Kakutani–Ky Fan theorems in spaces of multifunctions and applications to set differential inclusions. Dyn. Syst. Appl. 16, 73–88 (2007)
28. 28.
De Blasi, F.S., Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso. Boll. Un. Mat. Ital. 2(4), 491–501 (1969); Errata corrige, ibid. 3 (4), 699 (1969)
29. 29.
Deimling, K.: Ordinary Differential Equations in Banach Spaces Lecture Notes in Mathematics, vol. 596. Springer, Berlin (1977)Google Scholar
30. 30.
Deimling, K.: Multivalued Differential Equations. De Gruyter Series in Nonlinear Analysis and Applications, vol. 1. Walter de Gruyter & Co., Berlin (1992)Google Scholar
31. 31.
Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries Advances in Design and Control, 2nd edn., vol. 22. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2011)Google Scholar
32. 32.
Diamond, P., Kloeden, P.E.: Metric spaces of fuzzy sets. World Scientific Publishing Co. Inc., NJ (1994)
33. 33.
Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1969)
34. 34.
Donchev, T.D., Farkhi, E.M., Wolenski, P.R.: Characterizations of reachable sets for a class of differential inclusions. Funct. Differ. Equ. 10, 473–483 (2003)
35. 35.
Dontchev, A.L., Farkhi, E.M.: Error estimates for discretized differential inclusion. Computing 41, 349–358 (1989)
36. 36.
Doyen, L.: Filippov and invariance theorems for mutational inclusions of tubes. Set-Valued Anal. 1, 289–303 (1993)
37. 37.
Doyen, L.: Shape Lyapunov functions and stabilization of reachable tubes of control problems. J. Math. Anal. Appl. 184, 222–228 (1994)
38. 38.
Doyen, L.: Mutational equations for shapes and vision-based control. J. Math. Imaging Vis. 5, 99–109 (1995)
39. 39.
Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)Google Scholar
40. 40.
Frankowska, H.: Local controllability and infinitesimal generators of semigroups of set-valued maps. SIAM J. Control Optim. 25, 412–432 (1987)
41. 41.
Frankowska, H.: A priori estimates for operational differential inclusions. J. Differ. Equ. 84, 100–128 (1990)
42. 42.
Frankowska, H., Plaskacz, S., Rzezuchowski, T.: Measurable viability theorems and the Hamilton–Jacobi–Bellman equation. J. Differ. Equ. 116, 265–305 (1995)
43. 43.
Fremlin, D.H.: Measurable functions and almost continuous functions. Manuscr. Math. 33, 387–405 (1981)
44. 44.
Gautier, S., Pichard, K.: Viability results for mutational equations with delay. Numer. Funct. Anal. Optim. 24, 273–284 (2003)
45. 45.
Gorre, A.: Evolutions of tubes under operability constraints. J. Math. Anal. Appl. 216, 1–22 (1997)
46. 46.
Green, J.W., Valentine, F.A.: On the Arzelà–Ascoli theorem. Math. Mag. 34, 199–202 (1961)
47. 47.
Hartman, P.: Ordinary Differential Equations. Classics in Applied Mathematics, vol. 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). Corrected reprint of the second (1982) edition Birkhäuser, BostonGoogle Scholar
48. 48.
Himmelberg, C.J.: Precompact contraction of metric uniformities, and the continuity of F(t,x). Rend. Sem. Mat. Univ. Padova 50, 185–188 (1973)
49. 49.
Himmelberg, C.J.: Correction to: “Precompact contraction of metric uniformities, and the continuity of F(t,x)” (Rend Sem. Mat. Univ. Padova 50, 185–188 (1973)). Rend. Sem. Mat. Univ. Padova 51, 361 (1974)
50. 50.
Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, Vol. II Mathematics and Its Applications, vol. 500. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
51. 51.
Jacobs, M.Q.: Measurable multivalued mappings and Lusin’s theorem. Trans. Am. Math. Soc. 134, 471–481 (1968)
52. 52.
Jarník, J., Kurzweil, J.: On conditions on right hand sides of differential relations. Čas. Pěest Mat. 102, 334–349 (1977)
53. 53.
Kisielewicz, M.: Multivalued differential equations in separable Banach spaces. J. Optim. Theory Appl. 37, 231–249 (1982)
54. 54.
Kloeden, P.E., Lorenz, T.: Stochastic differential equations with nonlocal sample dependence. Stoch. Anal. Appl. 28, 937–945 (2010)
55. 55.
Kloeden, P.E., Lorenz, T.: Stochastic morphological evolution equations. J. Differ. Equ. 251, 2950–2979 (2011)
56. 56.
Kloeden, P.E., Lorenz, T.: Fuzzy differential equations without fuzzy convexity. Fuzzy Sets Syst. 230, 65–81 (2013)
57. 57.
Kloeden, P.E., Lorenz, T.: A Peano-like theorem for stochastic differential equations with nonlocal sample dependence. Stoch. Anal. Appl. 31, 19–30 (2013)
58. 58.
Kloeden, P.E., Lorenz, T.: A Peano theorem for fuzzy differential equations with evolving membership grade. Fuzzy Sets Syst. 280, 1–26 (2015)
59. 59.
Kloeden, P.E., Rasmussen, M.: Nonautonomous Dynamical Systems Mathematical Surveys and Monographs, vol. 176. American Mathematical Society, Providence (2011)Google Scholar
60. 60.
Kloeden, P.E., Sadovsky, B.N., Vasilyeva, I.E.: Quasi-flows and equations with nonlinear differentials. Nonlinear Anal. 51, 1143–1158 (2002)
61. 61.
Lakshmikantham, V., Bhaskar, T.G., Vasundhara Devi, J.: Theory of Set Differential Equations in Metric Spaces. Cambridge Scientific Publishers, Cambridge (2006)
62. 62.
Lakshmikantham, V., Mohapatra, R.N.: Theory of Fuzzy Differential Equations and Inclusions Series in Mathematical Analysis and Applications, vol. 6. Taylor & Francis Ltd., London (2003)Google Scholar
63. 63.
Lakshmikantham, V., Tolstonogov, A.A.: Existence and interrelation between set and fuzzy differential equations. Nonlinear Anal. 55, 255–268 (2003)
64. 64.
Lorenz, T.: Set-valued maps for image segmentation. Comput. Vis. Sci. 4, 41–57 (2001)
65. 65.
Lorenz, T.: Morphological control problems with state constraints. SIAM J. Control Optim. 48, 5510–5546 (2010)
66. 66.
Lorenz, T.: Mutational Analysis Lecture Notes in Mathematics, vol. 1996. Springer, Berlin (2010)Google Scholar
67. 67.
Lorenz, T.: Mutational inclusions: differential inclusions in metric spaces. Discret. Contin. Dyn. Syst. Ser. B 14, 629–654 (2010)
68. 68.
Malinowski, M.T.: On set differential equations in Banach spaces—a second type Hukuhara differentiability approach. Appl. Math. Comput. 219, 289–305 (2012)
69. 69.
Malinowski, M.T., Michta, M.: Stochastic set differential equations. Nonlinear Anal. 72, 1247–1256 (2010)
70. 70.
Malinowski, M.T., Michta, M.: Set-valued stochastic integral equations driven by martingales. J. Math. Anal. Appl. 394, 30–47 (2012)
71. 71.
Malinowski, M.T., Michta, M.: The interrelation between stochastic differential inclusions and set-valued stochastic differential equations. J. Math. Anal. Appl. 408, 733–743 (2013)
72. 72.
Murillo Hernández, J.A.: Tangential regularity in the space of directional-morphological transitions. J. Convex Anal. 13, 423–441 (2006)
73. 73.
Najman, L.: Euler method for mutational equations. J. Math. Anal. Appl. 196, 814–822 (1995)
74. 74.
Panasjuk, A.I., Panasjuk, V.I.: An equation generated by a differential inclusion. Math. Notes 27, 213–218 (1980)
75. 75.
Panasyuk, A.I.: Quasidifferential equations in a metric space. Differ. Uravn. 21, 1344–1353 (1985)
76. 76.
Panasyuk, A.I.: Qualitative dynamics of sets that are defined by differential inclusions. Mat. Zametki 45, 80–88 (1989)
77. 77.
Panasyuk, A.I.: Equations of attainable set dynamics. I. Integral funnel equations. J. Optim. Theory Appl. 64, 349–366 (1990)
78. 78.
Panasyuk, A.I.: Properties of solutions of a quasidifferential approximation equation and an equation of an integral funnel. Differ. Uravn. 28, 1537–1544 (1992)
79. 79.
Panasyuk, A.I.: Quasidifferential equations in a complete metric space under Carathéodory-type conditions. I. Differ. Uravn. 31, 962–972 (1995)
80. 80.
Panasyuk, A.I.: Quasidifferential equations in a complete metric space under Carathéodory-type conditions. II. Differ. Uravn. 31, 1361–1369 (1995)
81. 81.
Panasyuk, A.I., Bentsman, Dzh.: Application of quasidifferential equations to the description of discontinuous processes. Differ. Uravn. 33, 1339–1348 (1997)
82. 82.
Papageorgiou, N.S.: Convexity of the orientor field and the solution set of a class of evolution inclusions. Math. Slovaca 43, 593–615 (1993)
83. 83.
Pichard, K., Gautier, S.: Equations with delay in metric spaces: the mutational approach. Numer. Funct. Anal. Optim. 21, 917–932 (2000)
84. 84.
Quincampoix, M., Veliov, V.: Open-loop viable control under uncertain initial state information. Set-Valued Anal. 7, 55–87 (1999)
85. 85.
Quincampoix, M., Veliov, V.M.: Solution tubes to differential inclusions within a collection of sets. Control Cybern. 31, 847–862 (2002)
86. 86.
Quincampoix, M., Veliov, V.M.: Optimal control of uncertain systems with incomplete information for the disturbances. SIAM J. Control Optim. 43, 1373–1399 (2005)
87. 87.
Rockafellar, R.T., Wets, R. J.-B.: Variational Analysis Grundlehren Der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317. Springer, Berlin (1998)Google Scholar
88. 88.
Schaefer, H.H., Wolff, M.P.: Topological Vector Spaces Graduate Texts in Mathematics, 2nd edn., vol. 3. Springer, New York (1999)Google Scholar
89. 89.
Sendov, B., Popov, V.A.: The Averaged Moduli of Smoothness. Pure and Applied Mathematics (New York). Wiley, Chichester (1988)Google Scholar
90. 90.
Smirnov, G.V.: Introduction to the Theory of Differential Inclusions Graduate Studies in Mathematics, vol. 41. American Mathematical Society, Providence (2002)Google Scholar
91. 91.
Sokołowski, J., Zolésio, J.-P.: Introduction to Shape Optimization Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)Google Scholar
92. 92.
Tabor, J.: Differential equations in metric spaces. Math. Bohem. 127, 353–360 (2002)
93. 93.
Tolstonogov, A.A.: Equation of the solution funnel of a differential inclusion. Math. Notes 32, 908–914 (1983)
94. 94.
Tolstonogov, A.: Differential Inclusions in a Banach Space Mathematics and its Applications, vol. 524. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
95. 95.
Tolstonogov, A.A.: Solutions of evolution inclusions. I. Sibirsk. Mat. Zh. 33, 161–174 (1992)
96. 96.
Tolstonogov, A.A., Umanskiui, Ya.I.: Solutions of evolution inclusions. II. Sibirsk. Mat. Zh. 33, 163–174 (1992)
97. 97.
Vinter, R.: Optimal Control. Systems & Control: Foundations & Applications. Birkhäuser Boston Inc., Boston, MA (2000)
98. 98.
Wolenski, P.R.: The exponential formula for the reachable set of a Lipschitz differential inclusion. SIAM J. Control Optim. 28, 1148–1161 (1990)
99. 99.
Wolenski, P.R.: A uniqueness theorem for differential inclusions. J. Differ. Equ. 84, 165–182 (1990)
100. 100.
Yosida, K.: Functional Analysis Grundlehren Der Mathematischen Wissenschaften, 6th edn., vol. 123. Springer, Berlin–New York (1980)Google Scholar
101. 101.
Zhao, J., Song, B., Xi, N.: Non-vector space stochastic control for nano robotic manipulations. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, September 14–18, 2014, pp 852–857 (2014)Google Scholar
102. 102.
Zhao, J., Song, B., Xi, N., Sun, L., Chen, H., Jia, Y.: Non-vector space approach for nanoscale motion control. Autom. J. IFAC 50, 1835–1842 (2014)
103. 103.
Ziemer, W.P.: Weakly Differentiable Functions Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)Google Scholar