Skip to main content
Log in

Exponential Stability of Functional Differential Systems

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

We present a novel approach to exponential stability of functional differential systems. Our approach is relied upon the theory of positive linear functional differential systems and a comparison principle. Consequently, we get some comparison tests and explicit criteria for exponential stability of functional differential systems. Two examples are given to illustrate the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezansky, L., Braverman, E.: On stability of some linear and nonlinear delay differential equations. J. Math. Anal. Appl. 314, 391–411 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao, J., Wang, L.: Exponential stability and periodic oscillatory solution in BAM networks with delays. IEEE Trans. Neural Netw. 13, 457–463 (2002)

    Article  Google Scholar 

  3. Dieudonné, J.: Foundations of Modern Analysis. Academic Press, New York (1988)

    MATH  Google Scholar 

  4. van den Driessche, P., Zou, X.: Global attractivity in delayed Hopfield neural network models. SIAM J. Appl. Math. 58, 1878–1890 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Driver, R.D.: Existence and stability of solutions of a delay differential system. Arch. Ration. Mech. Anal. 10, 401–426 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fridman, E.: New Lyapunov–Krasovskii functionals for stability of linear retarded and neutral type systems. Syst. Control Lett. 43, 309–319 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fridman, E.: Stability of systems with uncertain delays: a new “complete” Lyapunov-Krasovskii functional. IEEE Trans. Autom. Control 51, 885–890 (2006)

    Article  MathSciNet  Google Scholar 

  8. Erneux, T.: Applied Delay Differential Equations Surveys and Tutorials in the Applied Mathematical Sciences, vol. 3. Springer, New York (2009)

    Google Scholar 

  9. Goubet-Bartholoméüs, A., Dambrine, M., Richard, J.P.: Stability of perturbed systems with time-varying delays. Syst. Control Lett. 31, 155–163 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haddad, W.M., Chellaboina, V., Hui, Q.: Nonnegative and Compartmental Dynamical Systems. Princeton University Press, New Jersey (2010)

    Book  MATH  Google Scholar 

  11. Hale, J., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  12. Idels, L., Kipnis, M.: Stability criteria for a nonlinear nonautonomous system with delays. Appl. Math. Model. 33, 2293–2297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kolmanovskii, V.B., Nosov, V.R.: Stability of Functional Differential Equations. Academic Press (1986)

  14. Kolmanovskii, V.B., Richard, J.P.: Stability of some linear systems with delays. IEEE Trans. Autom. Control 44, 984–989 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Mathematics in Science and Engineering, vol. 191. Academic Press (1993)

  16. Liu, X., Yu, W., Wang, L.: Stability analysis for continuous-time positive systems with time-varying delays. IEEE Trans. Autom. Control 55, 1024–1028 (2010)

    Article  MathSciNet  Google Scholar 

  17. Ngoc, P.H.A., Naito, T., Shin, J.S.: Characterizations of positive linear functional differential equations. Funkc. Ekvacioj 50, 1–17 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ngoc, P.H.A.: On exponential stability of nonlinear differential systems with time-varying delay. Appl. Math. Lett. 25, 1208–1213 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ngoc, P.H.A.: Novel criteria for exponential stability of functional differential equations. Proc. Am. Math. Soc. 141, 3083–3091 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ngoc, P.H.A.: Stability of positive differential systems with delay. IEEE Trans. Autom. Control 58, 203–209 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ngoc, P.H.A., Tinh, C.T.: New criteria for exponential stability of linear time-varying differential systems with delay. Taiwan. J. Math. 18, 1759–1774 (2014)

    MathSciNet  Google Scholar 

  22. Ngoc, P.H.A.: Stability of nonlinear differential systems with delay. Evol. Equ. Control Theory 4, 493–505 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ngoc, P.H.A.: Novel criteria for exponential stability of nonlinear differential systems with delay. IEEE Trans. Autom. Control 60, 485–490 (2015)

    Article  MathSciNet  Google Scholar 

  24. Son, N.K., Hinrichsen, D.: Robust stability of positive continuous-time systems. Numer. Funct. Anal. Optim. 17, 649–659 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill Science, New York (1976)

    MATH  Google Scholar 

  26. Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences Texts in Applied Mathematics, vol. 57. Springer, New York (2011)

    Book  Google Scholar 

  27. Xueli, S., Jigen, P.: A novel approach to exponential stability of nonlinear systems with time-varying delays. J. Comput. Appl. Math. 235, 1700–1705 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, J.: Globally exponential stability of neural networks with variable delays. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50, 288–290 (2003)

    Article  MathSciNet  Google Scholar 

  29. Zhang, B., Lam, J., Xu, S., Shu, Z.: Absolute exponential stability criteria for a class of nonlinear time-delay systems. Nonlinear Anal. RWA 11, 1963–1976 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zeng, Z., Wang, J., Liao, X.: Global exponential stability of a general class of recurrent neural networks with time-varying delays. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50, 1353–1358 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under the grant 101.01-2015.14. The authors would like to thank the anonymous referee for the appropriate comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham Huu Anh Ngoc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anh Ngoc, P.H., Tinh, C.T. Exponential Stability of Functional Differential Systems. Vietnam J. Math. 44, 727–738 (2016). https://doi.org/10.1007/s10013-016-0193-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-016-0193-z

Keywords

Mathematics Subject Classification (2010)

Navigation