Advertisement

Vietnam Journal of Mathematics

, Volume 44, Issue 1, pp 103–131 | Cite as

First- and Second-Order Necessary Optimality Conditions for Optimal Control Problems Governed by Stationary Navier–Stokes Equations with Pure State Constraints

  • Bui Trong KienEmail author
  • Gue Myung Lee
  • Nguyen Hai Son
Article

Abstract

Based on tools of variational analysis and the diffuse variation method, we derive the Pontryagin maximum principle and second-order necessary optimality conditions for optimal control problems governed by stationary Navier–Stokes equations with pure state constraints. Our results are established under a smallness assumption on the control and the optimality conditions are of Fritz–John type.

Keywords

Optimal control The stationary Navier–Stokes equations Pontryagin’s principle Pure state constraint First-order optimality condition Second-order optimality condition 

Mathematics Subject Classification (2010)

49K20 76D05 65J15 

Notes

Acknowledgments

The authors wish to express their sincere thanks to the anonymous referees for their helpful suggestions and comments which improved the original manuscript greatly. This research was partially supported by the Korea Science and Engineering Foundation NRL program grant of the Korea government (MEST)(No.ROA-2008-000-20010-0), the Alexander von Humboldt Foundation and the NAFOSTED period 2015–2017

References

  1. 1.
    Bayen, T., Bonnans, J.F., Silva, F.J.: Characterization of locall quadractic growth for strong minima in the optimal control of semilinear elliptic equations. Trans. Am. Math. Soc. 366, 2063–2087 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bewley, T., Temam, R., Ziane, M.: Existence and uniqueness of optimal control to the Navier–Stokes equations. C. R. Acard. Sci. Paris 330, 1007–1011 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bonnans, J.F., Cominetti, R., Shapiro, A.: Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optim. 9, 466–492 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    Borwein, J.M., Zhu, Q.J.: Techniques of Variational Analysis. Springer, New York (2005)zbMATHGoogle Scholar
  6. 6.
    Brezis, H.: Functional Analysis, Sobolev spaces and Partial Differential Equations. Springer, New York (2010)CrossRefGoogle Scholar
  7. 7.
    Casas, E., Mateos, M., Raymond, J.-P.: Error estimates for the numerical approximation of a distributed control problem for the steady-state Navier?Stokes equations. SIAM J. Control Optim. 46, 952–982 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Casas, E, de los Reyes, J.C., Tröltzsch, F.: Sufficient second-order optimality conditions for semilinear control problems with pointwise state constraints. SIAM J. Optim. 19, 616–643 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)zbMATHGoogle Scholar
  10. 10.
    Cominetti, R.: Metric regularity, tangent sets, and second-order optimality conditions. Appl. Math. Optim. 21, 265–287 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Constantin, P., Foias, C.: Navier–Stokes Equations. The University of Chicago Press, Chicago and London (1988)zbMATHGoogle Scholar
  12. 12.
    De Los Reyes, J.C., Tröltzsch, F.: Optimal control of the stationary Navier–Stokes equations with mixed control-state constraints. SIAM J. Control Optim. 46, 604–629 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    De Los Reyes, J.C., Griesse, R.: State-constrained optimal control of the three-dimensional stationary Navier–Stokes equations. J. Math. Anal. Appl. 343, 257–272 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Desai, M., Ito, K.: Optimal controls of Navier–Stokes equations. SIAM J. Control Optim. 32, 1428–1446 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Diestel, J.: Geometry of Banach Spaces - Selected Topics. Springer, Berlin (1975)zbMATHGoogle Scholar
  16. 16.
    Dubovitskii, A.Y., Milyutin, A.A.: Second variations in extremal problems with constraints. Dokl. Akad. Nauk SSSR 160, 18–21 (1965)MathSciNetGoogle Scholar
  17. 17.
    Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holand Publishing Company, Amsterdam (1979)zbMATHGoogle Scholar
  19. 19.
    Jourani, A.: Regularity and strong sufficient optimality conditions in differentiable optimization problems. Numer. Funct. Anal. Optim. 14, 69–87 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Jourani, A.: Metric regularity and second-order necessary optimality conditions for minimization problems under inclusion constraints. J. Optim. Theor. Appl. 81, 97–120 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kawasaki, H.: Second order necessary optimality conditions for minimizing a sup-type function. Math. Program. 49, 213–229 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kien, B.T., Nhu, V.H.: Second-order necessary optimality conditions for a class of semilinear elliptic optimal control problems with mixed pointwise constraints. SIAM J. Control Optim. 52, 1166–1202 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kien, B.T., Nhu, V.H., Rösch, A.: Second-order necessary optimality conditions for a class of optimal control problems governed by partial differential equations with pure state constraints. J. Optim. Theory Appl. 165, 30–61 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Li, X., Yong, J.: Optimal Control Theory for Infinite Dimensional Systems. Birkhäuser, Boston (1995)CrossRefGoogle Scholar
  25. 25.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I, Basic Theory. Springer, Berlin (2006)Google Scholar
  26. 26.
    Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II, Applications. Springer, Berlin (2006)Google Scholar
  27. 27.
    McShane, E.J.: The Lagrange multiplier rule. Am. Math. Mon. 80, 922–925 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Páles, Z., Zeidan, V.M.: Nonsmooth optimum problems with constraints. SIAM J. Control Optim. 32, 1476–1502 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Páles, Z., Zeidan, V.: Optimum problems with certain lower semicontinuous set-valued constraints. SIAM J. Optim. 8, 707–727 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Raymond, J.-P., Zidani, H.: Pontryagin’s principle for time-optimal problems. J. Optim. Theory Appl. 101, 375–402 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Raymond, J.-P., Zidani, H.: Pontryagin’s principle for state-constrained control problems governed by parabolic equations with unbounded controls. SIAM J. Control Optim. 36, 1853–1879 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Robinson, S.M.: Stability theory for systems of inequalities, part II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13, 497–513 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Temam, R.: Navier–Stokes Equations, Theory and Numerical Analysis. Elsevier Science Publisher, Amsterdam (1985)zbMATHGoogle Scholar
  34. 34.
    Ton, B.A.: An optimal control free boundary problem for the Navier–Stokes equations. Nonliner Anal. 63, 831–839 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wang, G.: Optimal control of 3-dimensional Navier–Stokes equations with state constraints. SIAM J. Control Optim. 41, 583–606 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Zowe, J., Kurcyusz, S.: Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5, 49–62 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zeidler, E.: Applied Functional Analysis, Main Principles and Their Applications. Springer, New York (1995)zbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  • Bui Trong Kien
    • 1
    Email author
  • Gue Myung Lee
    • 2
  • Nguyen Hai Son
    • 3
  1. 1.Department of Optimization and Control Theory, Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam
  2. 2.Department of Applied MathematicsPukyong National UniversityBusanKorea
  3. 3.School of Applied Mathematics and InformaticsHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations