Vietnam Journal of Mathematics

, Volume 44, Issue 3, pp 587–601 | Cite as

Construction of a Control for the Cubic Semilinear Heat Equation

  • Thi Minh Nhat VoEmail author


In this article, we consider the null controllability problem for the cubic semilinear heat equation in bounded domains Ω of ℝ n , n ≥ 3 with Dirichlet boundary conditions for small initial data. A constructive way to compute a control function acting on any nonempty open subset ω of Ω is given such that the corresponding solution of the cubic semilinear heat equation can be driven to zero at a given final time T. Furthermore, we provide a quantitative estimate for the smallness of the size of the initial data with respect to T that ensures the null controllability property.


Null controllability Cubic semilinear heat equation Linear heat equation 

Mathematics Subject Classification (2010)

Primary 35K58 Secondary 93B05 



The author would like to express her gratitude to both referees of this journal for the valuable comments, important suggestions, and corrections of this work which improved substantially the first version of this article.


  1. 1.
    Aniţa, S., Tataru, D.: Null controllability for the dissipative semilinear heat equation. Appl. Math. Optim. 46, 97–105 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations. Oxford Lecture Series in Mathematics and its Applications, vol. 13. The Clarendon Press, Oxford University Press, New York (1998)Google Scholar
  3. 3.
    Coron, J.-M., Guerrero, S., Rosier, L.: Null controllability of a parabolic system with a cubic coupling term. SIAM J. Control Optim. 48, 5629–5652 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Díaz, J.I., Lions, J.L.: On the approximate controllability for some explosive parabolic problems. In: Hoffmann, K.-H., et al. (eds.) Optimal Control of Partial Differential Equations (Chemnitz, 1998), Internat. Ser. Numer. Math., vol. 133, pp 115–132. Basel, Birkhäuser (1999)Google Scholar
  5. 5.
    Fernández-Cara, E., Guerrero, S.: Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45, 1395–1446 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Fernández-Cara, E., Zuazua, E.: Null and approximate controllability for weakly blowing up semilinear heat equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 17, 583–616 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fursikov, A.V., Yu Imanuvilov, O.: Controllability of Evolution Equations. Lecture Notes, vol. 34. Seoul National University, Seoul (1996)zbMATHGoogle Scholar
  8. 8.
    Lebeau, G., Robbiano, R.: Contróle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20, 335–356 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Liu, Y., Takahashi, T., Tucsnak, M.: Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var. 19, 20–42 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Phung, K.D., Wang, G.: An observability estimate for parabolic equations from a measurable set in time and its applications. J. Eur. Math. Soc. 15, 681–703 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Phung, K.D., Wang, L., Zhang, C.: Bang-bang property for time optimal control of semilinear heat equation. Ann. Inst. Henri Poincaré Anal. Non Linéaire 31, 477–499 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Wang, G., Zhang, C.: Observability inequalities from measurable sets for some evolution equations. arXiv:1406.3422 (2014)
  13. 13.
    Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Dafermos, C.M., Pokorný, M (eds.) Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp 527–621. Elsevier/North-Holland, Amsterdam (2007)CrossRefGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS UMR 7539, Institut GaliléeVilletaneuse CedexFrance
  2. 2.Université d’Orléans, Laboratoire MAPMO, CNRS UMR 7349, Fédération Denis Poisson, FR CNRS 2964, Bâtiment de MathématiquesOrléans Cedex 2France
  3. 3.Ho Chi Minh City University of Natural ScienceHo Chi Minh CityVietnam

Personalised recommendations