Advertisement

Vietnam Journal of Mathematics

, Volume 44, Issue 1, pp 5–28 | Cite as

Numerical Solution of a Non-Linear Volterra Integral Equation

  • K. Maleknejad
  • P. Torabi
  • S. SauterEmail author
Article
  • 210 Downloads

Abstract

In this paper, a numerical method to solve non-linear integral equations based on a successive approximation technique is considered. A sequence of functions is produced which converges to the solution. The process includes a fixed point method, a quadrature rule, and an interpolation method. To find a total bound of the error, we investigate error bounds for each approximation and by combining them, we will derive an estimate for the total error. The accuracy and efficiency of the method is illustrated in some numerical examples.

Keywords

Nonlinear quadratic Volterra integral equation Fixed point theorem Measure of noncompactness Fixed point method Adaptive quadrature Nonuniform interpolation nodes 

Mathematics Subject Classification (2010)

45D05 65D07 65R20 

References

  1. 1.
    Agarwal, R.P., O’Regan, D., Wong, P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations. Kluwer Academic, Dordrecht (1999)CrossRefzbMATHGoogle Scholar
  2. 2.
    Appell, J., Zabrejko, P.P.: Nonlinear Superposition Operators. Cambridge Tracts in Mathematics, vol. 95. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  3. 3.
    Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces, vol. 60. Marcel Dekker, New York (1980)zbMATHGoogle Scholar
  4. 4.
    Banaś, J., Martinon, A.: Monotone solutions of a quadratic integral equation of Volterra type. Comput. Math. Appl. 47, 271–279 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Banaś, J., Olszowy, L.: Measures of noncompactness related to monotonicity. Comment. Math. 41, 13–23 (2001)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Banaś, J., Rzepka, B.: On existence and asymptotic stability of solutions of a nonlinear integral equation. J. Math. Anal. Appl. 284, 165–173 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Banaś, J., Sadarangani, K.: Monotonicity properties of the superposition operator and their applications. J. Math. Anal. Appl. 340, 1385–1394 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Burden, R.L., Faires, J.D.: Numerical Analysis, 8th edition. Cengage learning (2005)Google Scholar
  9. 9.
    Burton, T.A.: Volterra Integral and Differential Equations. Academic Press, New York (1983)zbMATHGoogle Scholar
  10. 10.
    Carey, G.F., Dinh, H.T.: Grading functions and mesh redistribution. SIAM J. Numer. Anal. 22, 1028–1040 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)CrossRefzbMATHGoogle Scholar
  12. 12.
    Kershaw, D: A note on the convergence of interpolatory cubic splines. SIAM J. Numer. Anal. 8, 67–74 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Maleknejad, K., Nouri, K., Mollapourasl, R.: Existence of solutions for some nonlinear integral equations. Commun. Nonlinear Sci. Numer. Simul. 14, 2559–2564 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Maleknejad, K., Nouri, K., Mollapourasl, R.: Investigation on the existence of solutions for some nonlinear functional-integral equations. Nonlinear Anal. 71, 1575–1578 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Maleknejad, K., Mollapourasl, R., Nouri, K.: Study on existence of solutions for some nonlinear functional-integral equations. Nonlinear Anal. 69, 2582–2588 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maleknejad, K., Torabi, P., Mollapourasl, R.: Fixed point method for solving nonlinear quadratic Volterra integral equations. Comput. Math. Appl. 62, 2555–2566 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mathews, J.H., Fink, K.D.: Numerical Methods Using Matlab, 4th edition. Prentice-Hall Inc, New Jersey (2004)Google Scholar
  18. 18.
    O’Regan, D., Meehan, M.: Existence Theory for Nonlinear Integral and Integro-Differential Equations. Kluwer Academic, Dordrecht (1998)CrossRefzbMATHGoogle Scholar
  19. 19.
    Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edition. Springer-Verlag, New York (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.School of MathematicsIran University of Science, TechnologyNarmakIran
  2. 2.Department of Basic SciencesJundi-Shapur University of TechnologyDezfulIran
  3. 3.Institut für MathematikUniversität ZürichZürichSwitzerland

Personalised recommendations