Vietnam Journal of Mathematics

, Volume 44, Issue 3, pp 449–462 | Cite as

Wronskian Formulation and Ansatz Method for Bad Boussinesq Equation

  • Lu Trong Khiem NguyenEmail author


In this work, two variants of the bad Boussinesq equation are studied. A Wronskian formulation is constructed for the solutions of the first equation. Various samples of real and complex solutions are given in accordance with zero and non-zero eigenvalues of the associated linear system of differential equations. Although the Wronskian formulation can also be derived for the second equation, a direct Ansatz method is proposed and successfully applied to obtain real solutions. The method is presented in this paper with concrete examples.


Hirota’s bilinear method Soliton equation Boussinesq equation Wronskian formulation Positon Complexiton Rational solution 


02.30.Ik 02.30.Jr 



The author thanks the anonymous referees whose comments and suggestions improved the clarity of presentation and the scientific aspect of the paper.


  1. 1.
    Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblemant parielles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)MathSciNetGoogle Scholar
  2. 2.
    Freeman, N.C., Nimmo, J.J.C.: Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: the Wronskian technique. Phys. Lett. A 95, 1–3 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Gaillard, P., Matveev, V.B.: Wronskian and Casorati determinant representations for Darboux-Pöschl-Teller potentials and their difference extensions. J. Phys. A: Math. Theor. 42 (2009)Google Scholar
  4. 4.
    Hirota, R.: Exact N-soliton solutions of the wave equation of long waves in shallow water and in nonlinear lattices. J. Math. Phys. 14, 810–814 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hirota, R., Ohta, Y., Satsuma, J.: Wronskian structures of solutions for soliton equations. Prog. Theor. Phys. Suppl. 94, 59–72 (1988)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Kamchatnov, A.M.: Nonlinear Periodic Waves and Their Modulations: an Introductory Course. World Scientific, Singapore (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–433 (1895)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Le, K.C., Nguyen, L.T.K.: Slope modulation of waves governed by sine-Gordon equation. Commun. Nonlinear Sci. Numer. Simul. 18, 1563–1567 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Le, K.C., Nguyen, L.T.K.: Amplitude modulation of waves governed by Korteweg-de Vries equation. Int. J. Eng. Sci. 83, 117–123 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Le, K.C., Nguyen, L.T.K.: Energy Methods in Dynamics. Springer-Verlag, Switzerland (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Li, C.-X., Ma, W.-X., Liu, X.-J., Zeng, Y.-B.: Wronskian solutions of the Boussinesq equation—solitons, negatons, positons and complexitons. Inverse Probl. 23, 279–296 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ma, W.-X.: Complexiton solutions to the Korteweg-de Vries equation. Phys. Lett. A 301, 35–44 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ma, W.-X., Maruno, K.-i.: Complexiton solutions of the Toda lattice equation. Phys. A 343, 219–237 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ma, W.-X., You, Y.: Rational solutions of the Toda lattice equation in Casoratian form. Chaos, Solitons Fractals 22, 395–406 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Ma, W.-X., Li, C.-X., He, J.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal. 70, 4245–4258 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Maruno, K.-i., Kajiwara, K., Oikawa, M.: Casorati determinant solution for the discrete-time relativistic Toda lattice equation. Phys. Lett. A 241, 335–343 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Maruno, K.-i., Oikawa, M.: Bilinear structure and determinant solution for the relativistic Lotka–Volterra equation. Phys. Lett. A 270, 122–131 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Matveev, V.B.: Positon-positon and soliton-positon collisions: KdV case. Phys. Lett. A 166, 209–212 (1992)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nimmo, J.J.C., Freeman, N.C.: Rational solutions of the Korteweg-de Vries equation in Wronskian form. Phys. Lett. A 96, 443–446 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Nimmo, J.J.C., Freeman, N.C.: A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a Wronskian. Phys. Lett. A 95, 4–6 (1983)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Nimmo, J.J.C, Freeman, N.C.: The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form. J. Phys. A: Math. Gen. 17, 1415–1424 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tang, Y., Chen, Y., Wang, L.: Wronskian and Grammian solutions for the (2+1)-dimensional BKP equation. Theor. Appl. Mech. Lett. 4, 11–013011 (2014)Google Scholar
  24. 24.
    Whitham, G.B.: Nonlinear dispersive waves. Proc. R. Soc. Lond. A 283, 238–261 (1965)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Ruhr-Universität BochumBochumGermany
  2. 2.Lehrstuhl für Mechanik - MaterialtheorieRuhr-Universität BochumBochumGermany

Personalised recommendations