Advertisement

Vietnam Journal of Mathematics

, Volume 43, Issue 4, pp 755–769 | Cite as

Dependence Polynomials of some Graph Operations

  • Zahra Shiri
  • Ali Reza AshrafiEmail author
Article
  • 79 Downloads

Abstract

Suppose G is a simple graph and c k = c k (G) denotes the number of complete subgraphs of size k in G. Then the dependence polynomial of G is defined as f G (x) = 1−c 1 x+c 2 x 2c 3 x 3+⋯+(−1) n x n , where n is the size of the largest complete subgraph in G. In this paper, exact formulas for dependence polynomial of some graph operations are presented.

Keywords

Dependence polynomial Graph operation Subgraph division Johnson graph Kneser graph 

Mathematics Subject Classification (2010)

05C31 05C76 05C90 

Notes

Acknowledgments

The authors are greatly indebted to the referee for his/her suggestions leaded us to improve the paper. The research of the authors are partially supported by the University of Kashan under grant no 364988/46.

References

  1. 1.
    Anitha, R., Lekshmi, R.S.: N-Sun decomposition of complete, complete bipartite and some Harary graphs. Int. J. Math. Sci. 2, 33–38 (2008)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Ashrafi, A.R., Hamzeh, A., Hossein-Zadeh, S.: Calculating of some topological indices of splices and links of graphs. J. Appl. Math. Inform. 29, 327–335 (2011)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Discrete Mathematics and Applications. SIAM, Philadelphia (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2012)zbMATHCrossRefGoogle Scholar
  5. 5.
    Cartier, P., Foata, D.: Problemes Combinatoires de Commutation et Rearrangements. Lecture Notes in Mathematics, vol. 85. Springer, Berlin (1969)Google Scholar
  6. 6.
    Došslić, T.: Splices, links, and their degree-weighted Wiener polynomials. Graph Theory Notes New York 48, 47–55 (2005)Google Scholar
  7. 7.
    Eliasi, M., Taeri, B.: Four new sums of graphs and their Wiener indices. Discret. Appl. Math. 157, 794–803 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Fisher, D.C.: The number of words of length n in a free semi-abelian monoid. Am. Math. Mon. 96, 610–614 (1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    Fisher, D.C., Solow, A.E.: Dependence polynomial. Discret. Math. 82, 251–258 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Frucht, R., Harary, F.: On the corona of two graphs. Aequ. Math. 4, 322–325 (1970)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Gutman, I., Harary, F.: Generalizations of the matching polynomial. Util. Math. 24, 97–106 (1983)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graph. CRC Press, Taylor & Francis Group, Boca Raton (2011)Google Scholar
  13. 13.
    Imrich, W., Klavžar, S., Rall, D.F.: Topics in Graph Theory: Graphs and their Cartesian Product. A K Peters Ltd., Wellesley (2008)Google Scholar
  14. 14.
    Kim, K.H., Makar-Limanov, L.G., Roush, F.W.: Graph monoids. Semigroup Forum 25, 1–7 (1982)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Qian, J., Dress, A., Wang, Y.: On the dependence polynomial of a graph. Eur. J. Comb. 28, 337–346 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Yeh, Y.N., Gutman, I.: On the sum of all distances in composite graphs. Discret. Math. 135, 359–365 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Wallis, W.D.: Magic Graphs. Birkhäuser, Boston (2000)Google Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Mathematical SciencesUniversity of KashanKashanIslamic Republic of Iran

Personalised recommendations