Advertisement

Vietnam Journal of Mathematics

, Volume 43, Issue 2, pp 257–281 | Cite as

A Norm Principle for Class Groups of Reductive Group Schemes over Dedekind Rings of Integers of Local and Global Fields

  • Nguyêñ Quôć Thǎńg
Article
  • 80 Downloads

Abstract

We discuss and prove some results on Corestriction principle for non-abelian étale cohomology and Norm principle for class groups of reductive group schemes over Dedekind rings in global fields.

Keywords

Non-abelian cohomology Reductive group schemes Norm principle Corestriction map 

Mathematics Subject Classification (2010)

Primary 11E72 14F20 14L15 Secondary 14G20 14G25 18G50 20G10 

Notes

Acknowledgements

I would like to thank P. Deligne for an e-mail message related with Section 2.3, to the referees for pointing out some inaccuracies in the preliminary versions of the paper and P. Gille for some e-mail exchange on the topic of the paper. Thanks are due to the Abdus Salam International Center for Theoretical Physics (Trieste), Max-Planck Institut für Mathematik (Bonn) and VIASM for the hospitality and support while the work over this paper was carried on.

References

  1. 1.
    Borel, A.: Some finiteness properties of adele groups over number fields. Publ. Math. I.H.É.S. 16, 5–30 (1963)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Borel, A., Prasad, G.: Finiteness theorems for discrete subgroups of bounded covolume in semisimple groups. Publ. Math. I.H.É.S. 69, 119–171 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Borel, A., Prasad, G.: Finiteness theorems for discrete subgroups of bounded covolume in semisimple groups. Addendum: Publ. Math. I.H.É.S. 71, 173–177 (1990)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Borovoi, M.V.: The algebraic fundamental group and abelian Galois cohomology of reductive algebraic groups. Preprint Max-Planck Inst., MPI/89-90, Bonn (1990); also: Abelian Galois Cohomology of Reductive Groups. Memoirs of Amer. Math. Soc., vol., 162 (1998)Google Scholar
  5. 5.
    Breen, L. Bitorseurs et cohomologie non-abélienne. In: Cartier, P. et al. (eds.) . The Grothendieck Festschrift, vol. 1, pp 401–476, Birkhäuser, Boston (1990)Google Scholar
  6. 6.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local, chap. III: Compléments et applications à la cohomologie galoisienne. J. Fac. Sci. Univ. Tokyo Sect. IA Math 34, 671–688 (1987)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Chevalley, S.C. Anneaux de Chow et applications. Notes polycopieés, I. H. P., Paris (1958)zbMATHGoogle Scholar
  8. 8.
    Colliot-Thélène, J.-L., Ojanguren, M.: Espaces principaux homogènes locallement triviaux. Publ. Math. I.H.É.S. 75, 97–122 (1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    Colliot-Thélène, J.-L., Sansuc, J.-J.: Principal homogeneous spaces under flasque tori: applications. J. Algebra 106, 148–205 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Conrad, B.: Finiteness theorems for algebraic groups over function fields. Compos. Math. 148, 555–639 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Conrad, B.: Weil and Grothendieck approach to adelic points. Preprint, available at (2012). http://www.math.stanford.edu/%7Econrad/adelictop.pdf
  12. 12.
    Deligne, P. Variétés de Shimura: Interprétation modulaire et techniques de construction de modèles canoniques. Automorphic Forms, Representations and L-functions, vol. 33, pp 247–289 (1979)Google Scholar
  13. 13.
    Demarche, C.: Le défaut d’approximation forte dans les groupes linéaires connexes. Proc. Lond. Math. Soc. 102, 563–597 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Demarche, C.: Méthodes cohomologiques pour l’étude des pointes rationnels sur les espaces homogènes. Thèse No. 9596, Université de Paris-Sud. Défense, October 23 (2009)Google Scholar
  15. 15.
    Demazure, M., Grothendieck, A. (Réd.): Schémas en Groupes. Lecture Notes in Mathematics, vol. 151–153. Springer-Verlag (1970)Google Scholar
  16. 16.
    Gille, P.: La R-équivalence sur les groupes algébriques réductifs définis sur un corps global. Publ. Math. I.H.É.S. 86, 199–235 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Gille, P.: Torseurs sur la droite affine et R-équivalence. Thèse Dr. Sci., Univ. Paris-Sud (1997). See also Gille, P.: Torseurs sur la droite affine. Trans. Gr. 7, 231–245 (2002)Google Scholar
  18. 18.
    Gille, P., Moret-Bailly, L.: Action algébriques des groupes arithmétiques. In: Batyrev, V., Skorobogatov, A. (eds.) Proceedings of the Conférence “Torsors, theory and applications”, Edinbourg (2011)Google Scholar
  19. 19.
    Giraud, J. Cohomologie Non-abélienne. Grundlehren der Wiss. Math. Springer-Verlag (1971)Google Scholar
  20. 20.
    González-Avilés, C.D.: Abelian class groups of reductive group schemes. Israel J. Math. 196, 175–214 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Grothendieck, A.: Le Groupe de Brauer, II. Théorie cohomologique. Sémin Bourbaki Exp, 297 (1965)Google Scholar
  22. 22.
    Grothendieck, A., et al. Revêtement étales et groupe fondamental. Séminaire de Géometrie Algébrique du Bois Marie 1960–1961 (SGA1). Lecture Notes in Mathemathics, vol. 224. Springer-Verlag, Berlin-New York (1971)Google Scholar
  23. 23.
    Harder, G.: Halbeinfache gruppenschemata über Dedekindringen. Invent. Math. 4, 165–191 (1967)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kato, K., Saito, S.: Global class field theory of arithmetic schemes. In: Bloch, S.J (ed.) Applications of Algebraic K-theory to Algebraic Geometry and Number Theory. Contemp. Math., vol. 55, pp 255–331. Am. Math. Soc., Providence (1986)Google Scholar
  25. 25.
    Kneser, M.: Strong approximation. In: Borel, A., Mostow, G.D. (eds.) Algebraic Groups and Discontinuous Subgroups. Proc. Sym. Pure Math., vol. 9, pp 187–196, Am. Math. Soc. Providence (1966)Google Scholar
  26. 26.
    Kneser, M.: Starken Approximation in algebraischen Gruppen. I. J. Reine Angew. Math. 218, 190–203 (1965)zbMATHMathSciNetGoogle Scholar
  27. 27.
    Kottwitz, R.: Stable trace formula: Elliptic singular terms. Math. Ann. 275, 365–399 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Nisnevich, Y.: Espaces homogènes principaux rationellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind. C. R. Acad. Sci. Paris, Sér. I Math 299, 5–8 (1984)zbMATHMathSciNetGoogle Scholar
  29. 29.
    Nisnevich, Y.: Rationally trivial principal homogeneous spaces, purity and arithmetic of reductive group schemes over extensions of two-dimensional regular local rings. C. R. Acad. Sci. Paris, Sér. I Math 309, 651–655 (1989)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Nisnevich, Y.: The completely decomposed topology on schemes and descent associated spectral sequences in algebraic K-theory. In: Jardine, J.F., Snaith, V.P (eds.) Algebraic K-Theory: Connections with Geometry and Topology, pp 241–342. Springer, Netherlands (1989)CrossRefGoogle Scholar
  31. 31.
    Nisnevich, Y.: On certain arithmetic and cohomological invariants of semisimple groups. Preprint, July 1989 (second ed.)Google Scholar
  32. 32.
    Oesterlé, J.: Nombres de Tamagawa et groupes unipotents en caractéristique p. Invent. Math. 78, 13–88 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Peyre, E.: Galois cohomology in degree three and homogeneous varieties. K-Theory 15, 99–145 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Platonov, V., Rapinchuk, A. Algebraic Groups and Number Theory. Academic Press (1994)Google Scholar
  35. 35.
    Rohlfs, J.: Arithmetisch definierte Gruppen mit Galoisoperation. Invent. Math. 48, 185– 205 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    Thǎńg, N.Q.: Corestriction principle in non-abelian Galois cohomology over local and global fields. J. Math. Kyoto Univ. 42, 287–304 (2002)MathSciNetGoogle Scholar
  37. 37.
    Thǎńg, N.Q.: Weak corestriction principle for non-abelian Galois cohomology. Homol., Homotopy Appl. 5, 219–249 (2003)CrossRefGoogle Scholar
  38. 38.
    Thǎńg, N.Q.: On Galois cohomology of semisimple groups over local and global fields of positive characteristic. Math. Z. 259, 457–467 (2008)CrossRefMathSciNetGoogle Scholar
  39. 39.
    Thǎńg, N.Q. Weak approximation, R-equivalence and Whitehead groups. In: Snaith, V.P (ed.) . Algebraic K-theory. Fields Inst. Commun., vol. 16, pp 345–354. Amer. Math. Soc., Providence, RI (1997)Google Scholar
  40. 40.
    Thǎńg, N.Q.: Weak approximation, Brauer and R-equivalence in algebraic groups over arithmetical fields. II. J. Math. Kyoto Univ. 42, 305–316 (2002)Google Scholar
  41. 41.
    Thǎńg, N.Q.: Equivalent conditions for (weak) corestriction principle for non-abelian étale cohomology of group schemes. Vietnam J. Math. 38, 89–116 (2010)Google Scholar
  42. 42.
    Thǎńg, N.Q.: Corestriction principle for non-abelian cohomology of reductive group schemes over arithmetic rings. Proc. Jpn. Acad., Ser. A 82, 147–151 (2006)CrossRefGoogle Scholar
  43. 43.
    Thǎńg, N.Q.: Corestriction principle for non-abelian cohomology of reductive group schemes over Dedekind rings of integers of local and global fields. Preprint MPI, 07–6 (2007)Google Scholar
  44. 44.
    Thǎńg, N.Q.: On Galois cohomology of semisimple algebraic groups over local and global fields of positive characteristic, III. Math. Z. 275, 1287–1315 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2015

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Sciences and TechnologyHanoiVietnam

Personalised recommendations