Skip to main content
Log in

Ridge-Parameter Regularization to Deconvolution Problem with Unknown Error Distribution

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

Our aim in this article is to estimate a density function f of i.i.d. random variables X 1, … , X n from a noise model Y j = X j + Z j , j = 1, 2, … , n. Here, (Z j )1≤jn is independent of (X j )1≤jn and is a finite sequence of i.i.d. noise random variables distributed with an unknown density function g. This problem is known as the deconvolution problem in nonparametric statistics. The general case in which the error density function g is unknown and its Fourier transform g ft can vanish on a subset of ℝ has still not been considered much. In the present article, we consider this case. Using direct i.i.d. data \(Z^{\prime }_{1},\ldots , Z^{\prime }_{m}\) which are collected in separated independent experiments, we propose an estimator \(\hat g\) to the unknown density function g. After that, applying a ridge-parameter regularization method and an estimation of the Lebesgue measure of low level sets of g ft, we give an estimator \(\hat f\) to the target density function f and evaluate therateof convergence of the quantity \(\mathbb {E}\|\hat f - f\|_{2}^{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Carroll, R.J., Hall, P.: Optimal rates of convergence for deconvolving a density. J. Am. Stat. Assoc. 83(404), 1184–1186 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Comte, F., Lacour, C.: Data-driven density estimation in the presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B 73, 601–627 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Devroye, L.: Consistent deconvolution in density estimation. Can. J. Stat. 17, 235–239 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  4. Diggle, P.J., Hall, P.: A Fourier approach to nonparametric deconvolution of a density estimate. J. R. Stat. Soc. Ser. B 55, 523–531 (1993)

    MATH  MathSciNet  Google Scholar 

  5. Fan, J.: On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Stat. 19, 1257–1272 (1991)

    Article  MATH  Google Scholar 

  6. Fan, J.: Asymptotic normality for deconvolution kernel density estimators. Sankhya: Indian. J. Stat. Ser. A 53, 97–110 (1991)

    MATH  Google Scholar 

  7. Fan, J.: Global behavior of deconvolution kernel estimates. Stat. Sin. 1, 541–551 (1991)

    MATH  Google Scholar 

  8. Hall, P., Meister, A.: A ridge-parameter approach to deconvolution. Ann. Stat. 35, 1535–1558 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Johannes, J.: Deconvolution with unknown error distribution. Ann. Stat. 37, 2301–2323 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Levin, B.Y.: Lectures on Entire Functions. Trans. Math. Monographs, vol. 150. AMS, Providence, Rhole Island (1996)

    Google Scholar 

  11. Lounici, K., Nickl, R.: Global uniform risk bounds for wavelet deconvolution estimators. Ann. Stat. 39, 201–231 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Meister, A.: Non-estimability in spite of identifiability in density deconvolution. Math. Methods Stat. 14, 479–487 (2005)

    MathSciNet  Google Scholar 

  13. Meister, A.: Deconvolution Problem in Nonparametric Statistics. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  14. Meister, A., Neumann, M.H.: Deconvolution from non-standard error densities under replicated measurements. Stat. Sin. 20, 1609–1636 (2010)

    MATH  MathSciNet  Google Scholar 

  15. Neumann, M.H.: On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7, 307–330 (1997)

    Article  MATH  Google Scholar 

  16. Pensky, M., Vidakovic, B.: Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Stat. 27, 2033–2053 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Stefanski, L.A., Carroll, R.J.: Deconvoluting kernel density estimators. Stat. 21, 169–184 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, X.F., Ye, D.: The effects of error magnitude and bandwidth selection for deconvolution with unknown error distribution. J. Nonparametr. Stat. 24, 153–167 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhang, C.H.: Fourier methods for estimating mixing densities and distributions. Ann. Stat. 18, 806–831 (1990)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referees for careful reading of the article and for helpful comments and suggestions leading to the improved version of our article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dang Duc Trong.

Additional information

Dedicated to the 65th birthday of Professor Nguyen Khoa Son.

This article is supported by the National Foundation of Scientific and Technology Development (NAFOSTED)-Project 101.01-2012.07.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trong, D.D., Phuong, C.X. Ridge-Parameter Regularization to Deconvolution Problem with Unknown Error Distribution. Vietnam J. Math. 43, 239–256 (2015). https://doi.org/10.1007/s10013-015-0119-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-015-0119-1

Keywords

Mathematics Subject Classification (2010)

Navigation