Advertisement

Vietnam Journal of Mathematics

, Volume 43, Issue 2, pp 215–228 | Cite as

State Feedback Guaranteed Cost Controller for Nonlinear Time-Varying Delay Systems

  • Piyapong Niamsup
  • Vu Ngoc PhatEmail author
Article

Abstract

This paper considers the problem of designing state feedback guaranteed cost controllers for a class of nonlinear systems with time-varying delay. The time delay is a continuous function belonging to a given interval and not required to be differentiable. By applying Lyapunov function method and linear matrix inequality (LMI) technique, new delay-dependent sufficient conditions for designing the state feedback guaranteed cost controller are derived. The method is also extended to handle system uncertainties in a straightforward way. A numerical example is given to illustrate the design procedure.

Keywords

Guaranteed cost control Stabilization Interval time-varying delays Lyapunov function Linear matrix inequalities 

Mathematics Subject Classification (2010)

93D20 34D20 37C75 

Notes

Acknowledgements

This work is supported by the National Foundation for Science and Technology Development, Vietnam under grant 101.01.2014.35 and the Chiang Mai University, Thailand. The authors would like to thank anonymous reviewer for valuable comments, which have improved our paper.

References

  1. 1.
    Anh, B.T., Son, N.K., Thanh, D.D.X.: Stability radii of positive linear time-delay systems under fractional perturbations. Syst. Control Lett. 58, 155–159 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Botmart, T., Niamsup, P., Phat, V.N.: Delay-dependent exponential stabilization for uncertain linear systems with interval non-differentiable time-varying delays. Appl. Math. Comput. 217, 8236–8247 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Boyd, S., Ghaoui, L., El Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM (1994)Google Scholar
  4. 4.
    Cao, J., Zhong, S., Hu, Y.: Novel delay-dependent stability conditions for MIMO networked control systems with nonlinear perturbation. Appl. Math. Comput. 197, 797–809 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Chang, S.S.L., Peng, T.K.C.: Adaptive guaranteed cost control of systems with uncertain parameters. IEEE Trans. Auto. Contr. 17, 474–483 (1972)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Chen, W.H., Guan, Z.H., Lu, X.: Delay-dependent output feedback guaranteed cost control for uncertain time-delay systems. Automatica 40, 1263–1268 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Chukwu, E.N.: Stability and Time-Optimal Control of Hereditary Systems. Academic Press, Boston (1992)Google Scholar
  8. 8.
    Esfahani, S.H., Moheimani, S.O.: An LMI approach to suboptimal guaranteed cost control for uncertain time-delay systems. IEE Proc. Control Theory Appl. 145, 491–498 (1998)CrossRefGoogle Scholar
  9. 9.
    Fridman, E., Niculescu, S.I.: On complete Lyapunov–Krasovskii functional techniques for uncertain systems with fast-varying delays. Int. J. Robust Nonl. Control 18, 364–374 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Gahinet, P., Nemirovskii, A., Laub, A.J., Chilali, M.: LMI Control Toolbox for Use with MATLAB. The MathWorks Inc. (1995)Google Scholar
  11. 11.
    Kharitonov, V.L.: Time-delay systems: Lyapunov Functionals and Matrices . Birkhauser, Dordrecht (2013)Google Scholar
  12. 12.
    Kwon, O.M., Park, J.H.: Guaranteed cost control for uncertain large-scale systems with time-delays via delayed feedback. Chaos Solitons Fractals 27, 800–812 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Kwon, O.M., Park, J.H., Lee, S.M.: On robust stability for uncertain neural networks with interval time-varying delays. IET Control Theory Appl. 2, 625–634 (2008)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Lee, T.H., Park, J.H., Ji, D.H., Kwon, O.M., Lee, S.M.: Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control. Appl. Math. Comput. 218, 6469–6481 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Lee, T.H., Ji, D.H., Park, J.H., Jung, H.Y.: Decentralized guaranteed cost dynamic control for synchronization of a complex dynamical network with randomly switching topology. Appl. Math. Comput. 219, 996–1010 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Lee, Y.S., Moon, Y.S., Kwon, W.H.: Delay-dependent guaranteed cost control for state delayed systems. In: Proc. Amer. Control Conf. Arlington, 3376–3381 (2011)Google Scholar
  17. 17.
    Moheimani, S.O., Petersen, I.R.: Optimal quadratic guaranteed cost control of a class of uncertain time-delay systems. IEE Proc. Control Theory Appl. 144, 183–188 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Park, J.H.: Delay-dependent criterion for guaranteed cost control of neutral delay systems. J. Optim. Theory. Appl. 124, 491–502 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Phat, V.N., Niamsup, P.: Stability analysis for a class of functional differential equations and applications. Nonlinear Anal. 71, 6265–6275 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Son, N.K., Ngoc, P.H.A.: Stability radii of linear functional differential equations. Vietnam J. Math. 29, 85–89 (2001)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Thuan, M.V., Phat, V.N.: Optimal guaranteed cost control of linear systems with mixed interval time-varying delayed state and control. J. Optim. Theory Appl. 152, 394–412 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Xie, J.S, Fan, B.Q., Young, S.L., Yang, J.: Guaranteed cost controller design of networked control systems with state delay. Acta Automatica Sinica 33, 170–174 (2007)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Yu, L., Chu, J.: An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica 35, 1155–1159 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Zhang, D., Yu, L.: Exponential stability analysis for neutral switched systems with interval time-varying mixed delays and nonlinear perturbations. Nonlinear Anal. Hybrid Syst. 6, 775–786 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Zhang, W., Cai, X.S., Han, Z.Z.: Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. J. Comput. Appl. Math. 234, 174–180 (2010)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceChiang Mai UniversityChiang MaiThailand
  2. 2.Institute of MathematicsVASTHanoiVietnam

Personalised recommendations