Vietnam Journal of Mathematics

, Volume 43, Issue 1, pp 173–179 | Cite as

Some Extensions of the Kolmogorov–Stein Inequality

Article
  • 68 Downloads

Abstract

In this paper, we prove some extensions of the Kolmogorov–Stein inequality for derivatives in L p (ℝ) norm to differential operators generated by a polynomial.

Keywords

Lp spaces Orlicz spaces Kolmogorov inequality 

Mathematics Subject Classification (2010)

26A24 41A17 

Notes

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2011.32.

References

  1. 1.
    Bang, H.H.: A remark on the Kolmogorov–Stein inequality. J. Math. Anal. Appl. 203, 861–867 (1996)Google Scholar
  2. 2.
    Bang, H.H.: On an inequality of Bohr for Orlicz spaces. Bull. Pol. Acad. Sci. 49, 383–389 (2001)Google Scholar
  3. 3.
    Bang, H.H., Thu, M.T.: On a Landau–Kolmogorov inequality. J. Inequal. Appl. 7, 663–672 (2002)Google Scholar
  4. 4.
    Bohr, H.: Ein allgemeiner Satz über die Integration eines trigonometrischen Polynoms. Prace Matem. -Fiz. 43, 273–288 (1935)Google Scholar
  5. 5.
    Bojanov, B.D., Varma, A.K.: On a polynomial inequality of Kolmogorov type. Proc. Amer. Math. Soc. 124, 491–496 (1996)Google Scholar
  6. 6.
    Borwein, P., Erdélyi, T.: Polynomials and Polynomial Inequalities. Graduate Texts in Mathematics, vol. 161. Springer-Verlag, New York (1995)Google Scholar
  7. 7.
    Burenkov, V.I.: Exact constants in inequalities for norms of intermediate derivatives on a finite interval. Proc. Steklov Inst. Math. 156, 22–29 (1980)Google Scholar
  8. 8.
    Certain, M.W., Kurtz, T.G.: Landau–Kolmogorov inequalities for semigroups and groups. Proc. Amer. Math. Soc. 63, 226–230 (1977)Google Scholar
  9. 9.
    Chernov, P.R.: Optimal Landau–Kolmogorov inequalities for dissipative operators in Hilbert and Banach spaces. Adv. Math. 34, 137–144 (1979)Google Scholar
  10. 10.
    Ditzian, Z.: Some remarks on inequalities of Landau and Kolmogorov. Aequat. Math. 12, 145–151 (1975)Google Scholar
  11. 11.
    Ditzian, Z.: A Kolmogorov-type inequality. Math. Proc. Camb. Philos. Soc. 136, 657–663 (2004)Google Scholar
  12. 12.
    Favard, J.: Application de la formule sommatoire d’Euler ` la démonstration de quelques propriétés extrémales des intégrales des fonctions périodiques et presque-périodiques. Mat. Tidsskr. B, 81–94 (1936)Google Scholar
  13. 13.
    Hörmander, L.: A new generalization of an inequality of Bohr. Math. Scand. 2, 33–45 (1954)Google Scholar
  14. 14.
    Kofanov, V.A.: On sharp Kolmogorov-type inequalities taking into account the number of sign changes of derivatives. Ukr. Math. J. 55, 548–565 (2008)Google Scholar
  15. 15.
    Kolmogorov, A.N.: On inequalities between upper bounds of the successive derivatives of an arbitrary function on an infinite interval. Amer. Math. Soc. Transl. Ser. 1 2, 233–243 (1962)Google Scholar
  16. 16.
    Krasnoselskii, M.A., Rutickii, Y.B.: Convex functions and orlicz spaces. GITTL, Moscow (1958). Engl. Transl. Noordhoff (1961)Google Scholar
  17. 17.
    Luxemburg, W.: Banach function spaces. (Thesis). Technische Hogeschool te Delft., The Netherlands (1955)Google Scholar
  18. 18.
    Nikolskii, S.M.: Approximation of functions of several variables and imbedding theorems. Moscow, Nauka (1977)Google Scholar
  19. 19.
    Rao, M.M., Ren, Z.D.: Theory of Orlicz spaces. Marcel Dekker, New York (1991)MATHGoogle Scholar
  20. 20.
    Stein, E.M.: Functions of exponential type. Ann. Math. 65, 582–592 (1957)Google Scholar
  21. 21.
    Tikhomirov, V.M., Magaril-Il’jaev, G.G.: Inequalities for derivatives. In Kolmogorov, A.N. Selected Papers, pp 387–390. Moscow, Nauka (1985)Google Scholar
  22. 22.
    Trigub, R.M.: Comparison of linear differential operators. Math. Notes 82, 380–394 (2007)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Institute of MathematicsVietnamese Academy of Science and TechnologyHanoiVietnam
  2. 2.Department of Mathematics, College of ScienceVietnam National UniversityHanoiVietnam

Personalised recommendations