Vietnam Journal of Mathematics

, Volume 42, Issue 3, pp 401–406 | Cite as

Jacobian Pairs of Two Rational Polynomials are Automorphisms

  • Nguyen Van ChauEmail author


It is shown that a polynomial map F = (P, Q) of ℂ2 is a polynomial automorphism of ℂ2 if J(P, Q) := P x Q y P y Q x c ≠ 0 and, in addition, both of polynomials P and Q are rational, i.e., the generic fibers of P and of Q are irreducible rational curves.


Jacobian conjecture Rational polynomial 

Mathematics Subject Classification (2010)

14R15 14H20 



This paper is written in memory of my great friend, Professor Carlos Gutierrez, who spend to me valuable helps and encouragements in a long time when I work in ICMC, University of Sao Paulo, Sao Carlos, Sao Paulo, Brazil. We would like to thank Professor Pierrette Cassou-Nogu`es for many valuable discussions and the referees for their useful comments and corrections which helped to improve the manuscript.


  1. 1.
    Barth, W., Peters, C., van de Ven, A.: Compact Complex Surfaces. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 4. Springer, Berlin (1984)Google Scholar
  2. 2.
    Artal Bartolo, E., Cassou-Nogues, P., Maugendre, H.: Quotients Jacobiens d’applications polynomiales. Ann. Inst. Fourier 53, 399–428 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Van den Essen, A.: Polynomial automorphisms and the Jacobian conjecture. Progress in Mathematics 190. Basel, Birkhauser (2000)CrossRefGoogle Scholar
  4. 4.
    Friedland, Sh.: Monodromy, differential equations and the Jacobian conjecture. Ann. Polon. Math. 72, 219–249 (1999)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley, New York (1978)zbMATHGoogle Scholar
  6. 6.
    Heitmann, R.: On the Jacobian conjecture. J. Pure Appl. Algebra 64, 36–72 (1990), and Corrigendum ibid. 90, 199–200 (1993)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Jelonek, Z.: The set of points at which a polynomial map is not proper. Ann. Polon. Math. 58, 259–266 (1993)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Kaliman, Sh.: On the Jacobian conjecture. Proc. Am. Math. Soc. 117, 45–51 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Keller, O.: Ganze Cremona-Transformatione. Monatsh. Math. Phys. 47, 299–306 (1939)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Le, D.T., Weber, C.: Polynômes à fibres rationnelles et conjecture Jacobienne 2 variables. C.R. Acad. Sci. Paris Sr. I Math. 320, 581–584 (1995)zbMATHGoogle Scholar
  11. 11.
    Némethi, A., Sigray, I.: On the monodromy representation of polynomial maps in n variables. Stud. Sci. Math. Hung. 39, 361–367 (2002)zbMATHGoogle Scholar
  12. 12.
    Neumann, W., Norbury, P.: Nontrivial rational polynomials in two variables have reducible fibres. Bull. Aust. Math. Soc. 58, 501–503 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Van Chau, N.: Non-zero constant Jacobian polynomial maps of ℂ2. Ann. Pol. Math. 71, 287–310 (1999)Google Scholar
  14. 14.
    Van Chau, N.: Two remarks on non-zero constant Jacobian polynomial maps of ℂ2. Ann. Pol. Math. 82, 39–44 (2003)Google Scholar
  15. 15.
    Van Chau, N.: Note on the Jacobian condition and the non-proper value set. Ann. Pol. Math. 84, 203–210 (2004)Google Scholar
  16. 16.
    Van Chau, N.: A note on the plane Jacobian conjecture. Ann. Pol. Math. 105, 13–19 (2012)Google Scholar
  17. 17.
    Razar, M.: Polynomial maps with constant Jacobian. Israel J. Math. 32, 97–106 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Varchenko, A.N.: Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 36, 957–1019 (1972)Google Scholar
  19. 19.
    Vistoli, A.: The number of reducible hypersurfaces in a pencil. Invent. Math. l12, 247–262 (1993)MathSciNetCrossRefGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations