Advertisement

Vietnam Journal of Mathematics

, Volume 42, Issue 3, pp 365–375 | Cite as

The Homotopy Type of the Complement to a System of Complex Lines in ℂ2

  • Nguyen Viet DungEmail author
  • Tran Quoc Cong
Article
  • 52 Downloads

Abstract

Using the braid monodromy presentation for the fundamental group of the complement to a system of complex lines in 2, we suggest a CW model for the homotopy type of that complement that modified our previous one \( C(\mathcal A)\). We also discuss the minimality of this model using the discrete Morse Theory.

Keywords

Discrete Morse theory Hyperplane arrangement Minimality 

Mathematics Subject Classification (2010)

52C53 32S22 

Notes

Acknowledgments

We would like to thank the referees for the thorough, constructive and helpful comments and suggestions which substantially helped to improve the paper.

References

  1. 1.
    Dimca, A., Papadima, S.: Hypersurface complements, Milnor fibers and higher homotopy groups of arrangements. Ann. Math. 158, 473–507 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dung, N.V., Vui, H.H.: The fundamental group of complex hyperplanes arrangements. Acta Math. Vietnam. 20, 31–41 (1995)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dung, N.V.: Braid monodromy of complex lines arrangements. Kodai Math. J. 22, 46–55 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dung, N.V.: A model for homotopy type of the complement. Acta Math. Vietnam. 27, 289–295 (2002)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Falk, M.: Homotopy types of line arrangements. Invent. Math. 111, 139–150 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Forman, R.: A user’s guide to discrete Morse theory. Sémin. Lothar. Combi 48. Article B48c (2002)Google Scholar
  8. 8.
    Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics 21. Springer (2008)Google Scholar
  9. 9.
    Libgober, A.: On the homotopy of the complement to plane algebraic curves. J. Reine Angew. Math. 376, 103–114 (1986)MathSciNetGoogle Scholar
  10. 10.
    Lundell, A., Weingram, S.: The topology of CW complexes. Van Nostrand-Reinhold, New York (1969)CrossRefzbMATHGoogle Scholar
  11. 11.
    Orlik, P.: Complement of subspace arrangements. J. Algebr. Geom. 1, 147–156 (1992)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Randell, R.: The fundamental group of the complement of a union of complex hyperplanes. Invent. Math. 69, 103–108 (1982). Correction: Invent. Math. 80 467–468 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Randell, R.: Morse theory, Milnor fibers and minimality of hyperplane arrangements. Proc. Am. Math. Soc. 130, 2737–2743 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Salvetti, M.: Topology of the complement of real hyperplanes in N. Invent. Math. 88, 603–618 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Salvetti, M., Settepanella, S.: Combinatorial Morse theory and minimality of hyperplane arrangements. Geom. Topol. 11, 1733–1766 (2007)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2014

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations