Skip to main content
Log in

A Fixed Point Scheme for Nonexpansive Mappings, Variational Inequalities and Equilibrium Problems

  • Published:
Vietnam Journal of Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce a new iteration scheme and prove a strong convergence theorem for finding a common element of the fixed point set of a nonexpansive mapping, the solution set of variational inequalities and the solution set of equilibrium problems. Under certain conditions on parameters, we show that the iterative sequences generated by the scheme strongly converge to a common element in a real Hilbert space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, P.N.: Strong convergence theorems for nonexpansive mappings and Ky Fan inequalities. J. Optim. Theory Appl. 154, 303–320 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Anh, P.N.: A hybrid extragradient method extended to fixed point problems and equilibrium problems. Optimization 62, 271–283 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Anh, P.N.: A hybrid extragradient method for pseudomonotone equilibrium problems and fixed point problems. Bull. Malays. Math. Soc. 36, 107–116 (2013)

    MATH  MathSciNet  Google Scholar 

  4. Anh, P.N., Son, D.X.: A new iterative scheme for pseudomonotone equilibrium problems and a finite family of pseudocontractions. J. Appl. Math. Inform. 29, 1179–1191 (2011)

    MATH  MathSciNet  Google Scholar 

  5. Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M.: Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space. Nonlinear Anal. 67, 2350–2360 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Blum, E., Oettli, W.: From optimization and variational inequality to equilibrium problems. Math. Stud. 63, 127–149 (1994)

    MathSciNet  Google Scholar 

  7. Ceng, L.C., Petruşel, A., Yao, J.C.: Iterative approaches to solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. J. Optim. Theory Appl. 143, 37–58 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Daniele, P., Giannessi, F., Maugeri, A.: Equilibrium Problems and Variational Models. Springer, New York (2003)

    Book  MATH  Google Scholar 

  10. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  11. Kim, J.K., Anh, P.N., Nam, Y.M.: Strong convergence of an extended extragradient method for equilibrium problems and fixed point problems. J. Korean Math. Soc. 49, 187–200 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Marino, G., Xu, H.-K.: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318, 43–52 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mastroeni, G.: Gap functions for equilibrium problems. J. Glob. Optim. 27, 411–426 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Peng, J.-W., Yao, J.-C.: Some new extragradient-like methods for generalized equilibrium problems, fixed point problems and variational inequality problems. Optim. Methods Softw. 25, 677–698 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  16. Takahashi, S., Takahashi, W.: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl. 331, 506–515 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wang, S., Guo, B.: New iterative scheme with nonexpansive mappings for equilibrium problems and variational inequality problems in Hilbert spaces. J. Comput. Appl. Math. 233, 2620–2630 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Wang, S., Cho, Y.J., Qin, X.: A new iterative method for solving equilibrium problems and fixed point problems for an infinite family of nonexpansive mappings. Fixed Point Theory Appl. (2010). doi:10.1155/2010/165098

    MathSciNet  Google Scholar 

  19. Wangkeeree, R., Preechasilp, P.: A new iterative scheme for solving the equilibrium problems, variational inequality problems, and fixed point problems in Hilbert spaces. J. Appl. Math. 154968 (2012). 21 pp. doi:10.1155/2012/154968

  20. Xu, H.K.: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116, 659–678 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Vietnam Institute for Advanced Study in Mathematics.

We are very grateful to two anonymous referees for their really helpful and constructive comments on improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pham N. Anh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anh, P.N., Thuy, L.Q. & Thanh, D.D. A Fixed Point Scheme for Nonexpansive Mappings, Variational Inequalities and Equilibrium Problems. Vietnam J. Math. 43, 71–91 (2015). https://doi.org/10.1007/s10013-014-0068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10013-014-0068-0

Keywords

Mathematics Subject Classification (2000)

Navigation