Attouch, H., Czarnecki, M.-O.: Asymptotic behavior of coupled dynamical systems with multiscale aspects. J. Differ. Equ. 248, 1315–1344 (2010)
Article
MathSciNet
MATH
Google Scholar
Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Prox-penalization and splitting methods for constrained variational problems. SIAM J. Optim. 21, 149–173 (2011)
Article
MathSciNet
MATH
Google Scholar
Attouch, H., Czarnecki, M.-O., Peypouquet, J.: Coupling forward-backward with penalty schemes and parallel splitting for constrained variational inequalities. SIAM J. Optim. 21, 1251–1274 (2011)
Article
MathSciNet
MATH
Google Scholar
Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics. Springer, New York (2011)
Book
MATH
Google Scholar
Bauschke, H.H., McLaren, D.A., Sendov, H.S.: Fitzpatrick functions: inequalities, examples and remarks on a problem by S. Fitzpatrick. J. Convex Anal. 13, 499–523 (2006)
MathSciNet
MATH
Google Scholar
Borwein, J.M.: Maximal monotonicity via convex analysis. J. Convex Anal. 13, 561–586 (2006)
MathSciNet
MATH
Google Scholar
Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press, Cambridge (2010)
Book
Google Scholar
Boţ, R.I.: Conjugate Duality in Convex Optimization. Lecture Notes in Economics and Mathematical Systems, vol. 637. Springer, Berlin (2010)
MATH
Google Scholar
Boţ, R.I., Csetnek, E.R.: An application of the bivariate inf-convolution formula to enlargements of monotone operators. Set-Valued Anal. 16, 983–997 (2008)
Article
MathSciNet
MATH
Google Scholar
Boţ, R.I., Csetnek, E.R.: Forward-Backward and Tseng’s type penalty schemes for monotone inclusion problems. arXiv:1306.0352 (2013)
Boţ, R.I., Hendrich, C.: Convergence analysis for a primal-dual monotone + skew splitting algorithm with applications to total variation minimization. arXiv:1211.1706v1 [math.OC] (2012)
Burachik, R.S., Svaiter, B.F.: Maximal monotone operators, convex functions and a special family of enlargements. Set-Valued Anal. 10, 297–316 (2002)
Article
MathSciNet
MATH
Google Scholar
Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)
Article
MathSciNet
Google Scholar
Combettes, P.L., Pesquet, J.-C.: Primal-dual splitting algorithm for solving inclusions with mixtures of composite, Lipschitzian, and parallel-sum type monotone operators. Set-Valued Var. Anal. 20, 307–330 (2012)
Article
MathSciNet
MATH
Google Scholar
Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)
MATH
Google Scholar
Fitzpatrick, S.: Representing monotone operators by convex functions. In: Workshop/Miniconference on Functional Analysis and Optimization, Canberra 1988. Proceedings of the Centre for Mathematical Analysis, vol. 20, pp. 59–65. Australian National University, Canberra (1988)
Google Scholar
Noun, N., Peypouquet, J.: Forward–backward penalty scheme for constrained convex minimization without inf-compactness. J. Optim. Theory Appl. 158, 787–795 (2013)
Article
MathSciNet
MATH
Google Scholar
Peypouquet, J.: Coupling the gradient method with a general exterior penalization scheme for convex minimization. J. Optim. Theory Appl. 153, 123–138 (2012)
Article
MathSciNet
MATH
Google Scholar
Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 33, 209–216 (1970)
Article
MathSciNet
MATH
Google Scholar
Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)
Article
MathSciNet
MATH
Google Scholar
Simons, S.: From Hahn–Banach to Monotonicity. Springer, Berlin (2008)
MATH
Google Scholar
Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, Singapore (2002)
Book
MATH
Google Scholar