Advertisement

Vietnam Journal of Mathematics

, Volume 41, Issue 4, pp 465–505 | Cite as

The Completion of a Classification for Maximal Nonhamiltonian Burkard–Hammer Graphs

  • Ngo Dac TanEmail author
Article
  • 54 Downloads

Abstract

A graph G=(V,E) is called a split graph if there exists a partition V=IK such that the subgraphs G[I] and G[K] of G induced by I and K are empty and complete graphs, respectively. Burkard and Hammer gave a necessary condition for a split graph G with |I|<|K| to be Hamiltonian (J. Comb. Theory, Ser. B 28:245–248, 1980). We will call a split graph G with |I|<|K| satisfying this condition a Burkard–Hammer graph. Further, a split graph G is called a maximal nonhamiltonian split graph if G is nonhamiltonian but G+uv is Hamiltonian for every \(uv\not\in E\), where uI and vK. N.D. Tan and L.X. Hung have classified maximal nonhamiltonian Burkard–Hammer graphs G with minimum degree δ(G)≥|I|−3. Recently, N.D. Tan and Iamjaroen have classified maximal nonhamiltonian Burkard–Hammer graphs with |I|≠6,7 and δ(G)=|I|−4. In this paper, we complete the classification of maximal nonhamiltonian Burkard–Hammer graphs with δ(G)=|I|−4 by finding all such graphs for the case |I|=6,7.

Keywords

Split graph Burkard–Hammer condition Burkard–Hammer graph Hamiltonian graph Maximal nonhamiltonian split graph 

Mathematics Subject Classification (2000)

05C45 05C75 

Notes

Acknowledgements

I would like to express my sincere thanks to the referee for his valuable remarks which helped me to improve the paper.

References

  1. 1.
    Behzad, M., Chartrand, G.: Introduction to the Theory of Graphs. Allyn & Bacon, Boston (1971) zbMATHGoogle Scholar
  2. 2.
    Burkard, R.E., Hammer, P.L.: A note on Hamiltonian split graphs. J. Comb. Theory, Ser. B 28, 245–248 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. Ann. Discrete Math. 1, 145–162 (1977) CrossRefGoogle Scholar
  4. 4.
    Földes, S., Hammer, P.L.: Split graphs. In: Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing, Louisiana State Univ., Baton Rouge, LA, 1977. Congressus Numerantium, vol. XIX, pp. 311–315. Utilitas Math., Winnipeg (1977) Google Scholar
  5. 5.
    Földes, S., Hammer, P.L.: On a class of matroid-producing graphs. In: Combinatorics, Proc. Fifth Hungarian Colloq., Keszthely, 1976. Colloq. Math. Soc. Janós Bolyai 18, vol. 1, pp. 331–352. North-Holland, Amsterdam (1978) Google Scholar
  6. 6.
    Henderson, P.B., Zalcstein, Y.: A graph-theoretic characterization of the PV chunk class of synchronizing primitive. SIAM J. Comput. 6, 88–108 (1977) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Hesham, A.H., Hesham, El.R.: Task allocation in distributed systems: a split graph model. J. Comb. Math. Comb. Comput. 14, 15–32 (1993) zbMATHGoogle Scholar
  8. 8.
    Kratsch, D., Lehel, J., Müller, H.: Toughness, Hamiltonicity and split graphs. Discrete Math. 150, 231–245 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Peemöller, J.: Necessary conditions for Hamiltonian split graphs. Discrete Math. 54, 39–47 (1985) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Peled, U.N.: Regular Boolean functions and their polytope. Chap. VI, Ph.D. Thesis, Univ. Waterloo, Dept. Comb. Optim. (1975) Google Scholar
  11. 11.
    Tan, N.D.: A note on maximal nonhamiltonian Burkard–Hammer graphs. Vietnam J. Math. 34, 397–409 (2006) zbMATHMathSciNetGoogle Scholar
  12. 12.
    Tan, N.D., Hung, L.X.: Hamilton cycles in split graphs with large minimum degree. Discuss. Math. Graph Theory 24, 23–40 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Tan, N.D., Hung, L.X.: On the Burkard–Hammer condition for Hamiltonian split graphs. Discrete Math. 296, 59–72 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Tan, N.D., Iamjaroen, C.: Constructions for nonhamiltonian Burkard–Hammer graphs. In: Combinatorial Geometry and Graph Theory (Proc. of Indonesia–Japan Joint Conf.), Bandung, Indonesia, September 13–16, 2003. Lect. Notes Comput. Sci., vol. 3330, pp. 185–199. Springer, Berlin (2005) CrossRefGoogle Scholar
  15. 15.
    Tan, N.D., Iamjaroen, C.: A necessary condition for maximal nonhamiltonian Burkard–Hammer graphs. J. Discrete Math. Sci. Cryptogr. 9, 235–252 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Tan, N.D., Iamjaroen, C.: A classification for maximal nonhamiltonian Burkard–Hammer graphs. Discuss. Math. Graph Theory 28, 67–89 (2008) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Vietnam Academy of Science and Technology (VAST) and Springer Science+Business Media Singapore 2013

Authors and Affiliations

  1. 1.Institute of MathematicsVietnam Academy of Science and TechnologyHanoiVietnam

Personalised recommendations