Skip to main content
Log in

Validation of a wind turbine gearbox strain simulation model in service to virtual sensing

Validierung eines Dehnungssimulationsmodells eines Windenergieanlagengetriebes im Dienst der virtuellen Sensorik

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Over the last decades, the use of wind power as a source of renewable power has increased, while the Levelized Cost of Electricity (LCoE) of wind power has fallen. In order to further drive down the LCoE, there is an increasing interest to monitor key turbine quantities in order to improve maintenance procedures and decrease downtime. In this paper, we focus on the indirect detection of one such key quantity, the torque load on the gearbox. In order to avoid expensive direct torque sensors, we study the potential of strain gauges installed on the gearbox housing as virtual torque sensors. Our results verify that the strain response is repeatable, torque-driven and predictable; which are the most important conditions for using the sensors in virtual load sensing. Next, we compare the measured strain response to simulated strain results obtained from a physics-based model. The model consists of a static FE model of the gearbox housing and a torsional model of the shafts and gears in the drivetrain. An optimisation approach selects the FE model node where the simulated strain best matches the measured strain. We conclude that the studied strain gauges are promising for model-based virtual sensing of the torque on the gearbox.

Zusammenfassung

Im Lauf der letzten Jahrzehnte hat die Nutzung der Windkraft als Quelle erneuerbarer Energie zugenommen, während die Stromgestehungskosten („Levelized Cost of Electricity”, LCoE) der Windkraft gesunken sind. Um die LCoE weiter zu senken, besteht ein zunehmendes Interesse daran, wichtige Schlüsselgrößen der Windenergieanlagen zu überwachen, um die Wartungsverfahren zu verbessern und Ausfallzeiten zu verkürzen. In diesem Beitrag konzentrieren wir uns auf die indirekte Erfassung einer solchen Schlüsselgröße, der Drehmomentbelastung des Getriebes. Um teure direkt-messende Drehmomentsensoren zu vermeiden, untersuchen wir das Potenzial von Dehnungsmessstreifen (DMS), die auf dem Getriebegehäuse als virtuelle Drehmomentsensoren installiert sind. Unsere Ergebnisse bestätigen, dass das Dehnungssignal wiederholbar, drehmomentgesteuert und vorhersagbar ist; dies sind die wichtigsten Voraussetzungen für den Einsatz der DMS als virtuelle Drehmomentsensoren. Weiterhin vergleichen wir das gemessene Dehnungssignal mit simulierten Dehnungssignalen, die von einem physikalischen Modell stammen. Das Modell besteht aus einem statischen FE-Modell des Getriebegehäuses und einem Torsionsmodell der Wellen und Zahnräder im Antriebsstrang der Windenergieanlage. Ein Optimierungsansatz wählt denjenigen Knoten des FE-Modells aus, bei dem das simulierte Dehnungssignal am besten mit dem gemessenen übereinstimmt. Wir schließen daraus, dass die untersuchten DMS vielversprechend für die modellbasierte virtuelle Erfassung des Drehmoments am Getriebe sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Eurostat (2022) Renewable energy on the rise: 37% of EU’s electricity. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20220126-1. Accessed 9 December 2022

  2. (2019) A European Green Deal. https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en. Accessed 9 December 2022

  3. IRENA (2020) Renewable Power Generation Costs in 2019. Tech. Rep., IRENA, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Jan/IRENA_2017_Power_Costs_2018.pdf (arXiv:1011.1669v3.). Accessed 9 December 2022

  4. Nejad AR et al (2022) Wind turbine drivetrains: state-of-the-art technologies and future development trends. Wind Energy Sci 7(1):387–411. https://doi.org/10.5194/wes-7-387-2022

    Article  Google Scholar 

  5. Peeters J, Schmidt S, Verellen M, Desmet W, Pluymers B, Moens D, Neeckx S (eds) (2022) Empowering a sustainable future with continuous innovation in wind turbine powertrains. Proceedings of ISMA2022 International Conference on Noise and Vibration Engineering. KU Leuven, Leuven, pp 27–39

    Google Scholar 

  6. Turnbull A, McKinnon C, Carrol J, McDonald A (2022) On the development of offshore wind turbine technology: an assessment of reliability rates and fault detection methods in a changing market. Energies. https://doi.org/10.3390/en15093180

    Article  Google Scholar 

  7. Carroll J, McDonald A, McMillan D (2016) Failure rate, repair time and unscheduled O&M cost analysis of offshore wind turbines. Wind Energy 19:1107–1119. https://doi.org/10.1002/we.1887

    Article  Google Scholar 

  8. HBM T12HT – very high-capacity torque. https://www.hbm.com/en/6337/t12ht-high-capacity-torque-sensor. Accessed 17 October 2022

  9. Cappelle C et al (2021) Sensor selection for cost-effective virtual torque measurements on a wind turbine gearbox. Forsch Ingenieurwes 85(2):325–334. https://doi.org/10.1007/s10010-021-00464-z

    Article  Google Scholar 

  10. Forrier B, Naets F, Desmet W (2017) Broadband load torque estimation in mechatronic powertrains using nonlinear kalman filtering. IEEE Trans Ind Electron 65(3):2378–2387. https://doi.org/10.1109/TIE.2017.2739709

    Article  Google Scholar 

  11. Perišić N, Kirkegaard PH, Pedersen BJ (2015) Cost-effective shaft torque observer for condition monitoring of wind turbines. Wind Energy 18:1–19

    Google Scholar 

  12. Mehlan FC, Nejad AR, Gao Z (2022) Digital twin based virtual sensor for online fatigue damage monitoring in offshore wind turbine drivetrains. J Offshore Mech Arct Eng 144:1–9. https://doi.org/10.1115/1.4055551

    Article  Google Scholar 

  13. Azzam B, Schelenz R, Jacobs G (2022) Sensor screening methodology for virtually sensing transmission input loads of a wind turbine using machine learning techniques and drivetrain simulations. Sensors. https://doi.org/10.3390/s22103659

    Article  Google Scholar 

  14. CWD Center for wind power drives. www.cwd.rwth-aachen.de. Accessed 13 October 2022

  15. Azzam B, Schelenz R, Cardaun M, Jacobs G (2023) From simulations to accelerated testing: design of experiments for accelerated load testing of a wind turbine drivetrain based on aeroelastic multibody simulation data. Appl Sci 13(1):356. https://doi.org/10.3390/app13010356

    Article  Google Scholar 

  16. Azzam B, Schelenz R, Jacobs G Development of a virtual sensor to estimate wind turbine gearbox input loads (Unpublished manuscript)

  17. Bosmans J, Gallas S, Rocha de Melo Filho NG, Kirchner M, Desmet W (2022) Validation of wind turbine gearbox structural FE models through modal analysis at component and (sub-)assembly level. Proceedings of ISMA2022 International Conference on Noise and Vibration Engineering. Leuven, pp 4551–4565

    Google Scholar 

  18. Risaliti, E. Model based virtual sensors for wheel center loads and full strain field on vehicle suspension components. Ph.D. thesis, KU Leuven (2019).

  19. Vanhollebeke, F. Dynamic Analysis of a Wind Turbine Gearbox Towards Prediction of Mechanical Tonalities. Ph.D. thesis, KU Leuven (2015).

Download references

Acknowledgements

This research is supported by the Flanders Innovation & Entrepreneurship Agency within the V6LoadS project in cooperation with the Center for Wind Power Drives and ZF Wind Power. The Center for Wind Power Drives is acknowledged for providing the measurement data considered in this paper, in the context of the joint V6LoadS project. Furthermore, the Research Fund KU Leuven is gratefully acknowledged for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelle Bosmans.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bosmans, J., Kirchner, M., Croes, J. et al. Validation of a wind turbine gearbox strain simulation model in service to virtual sensing. Forsch Ingenieurwes 87, 107–117 (2023). https://doi.org/10.1007/s10010-023-00635-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-023-00635-0

Navigation