Skip to main content

Nonlinear vibration for a micro electromagnetic harmonic drive system

Nichtlineare Vibration des elektromagnetischen harmonischen Übertragungssystems von Miniaturen

Abstract

In this paper, a nonlinear dynamics equation for a micro electromagnetic harmonic drive system is proposed considering nonlinearity caused by the molecule force applied to the flexible ring. Using the equations, the nonlinear resonant frequencies and the amplitude frequency characteristics of the drive system are investigated. Effects of the molecule force nonlinearity on the resonant frequencies and the amplitude-frequency characteristics and their changes along with system parameters are analyzed. Results show that the nonlinear effect of van der Waals forces on system vibration should be considered when the coil current and the radius of the flexible wheel are large, the thickness of the flexible wheel or the gap between the flexible wheel and the stator is small. The jump vibration zone of the flexible wheel reduces significantly with increasing the exciting current in the coil, the length of the flexible wheel, and the nonlinear parameter, or decreasing the thickness of the flexible wheel.

Zusammenfassung

In diesem Artikel werden die durch molekulare Kraft auf dem flexiblen Ring verursachte Nichtlinearität berücksichtigt und legt die nichtlineare dynamische Gleichung des mikro-elektromagnetischen harmonischen Übertragungssystems fest. Unter Verwendung dieser Gleichung wurden die nicht linearen Resonanzfrequenz- und Amplitudenfrequenzeigenschaften des Antriebssystems untersucht. Der Einfluss der molekularen Leistung auf die Resonanzfrequenz- und Amplitudenfrequenzeigenschaften und Änderungen ihrer Systemparameter. Die Ergebnisse zeigen, dass, wenn der Spulenstrom groß ist, die Dicke des weichen Rades oder der Spalt zwischen der Weichraddicke oder dem Weichrad und dem Stator, die nichtlinearen Effekte von Van Dewali auf die Systemvibration berücksichtigt werden. Mit der Erhöhung des Spulenanregungsstroms, der flexiblen Radlänge und der nichtlinearen Parameter oder der Verringerung der Dicke der flexiblen Räder nimmt die Schwingungszone der flexiblen Räder erheblich ab.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Wang C, Yang P, Zhang L (2006) Summary of status on the harmonic gear driving technology. J Mech Transm 30:536–567

    Google Scholar 

  2. Davey K (2009) A harmonic gear like motor. In: 2009 IEEE International Electric Machines and Drives Conference (IEMDC 2009) Miami, FL, USA, May 03–06. vol 1–3, pp 1789–1794

    Google Scholar 

  3. Trimmer W, Jebens R (1989) Harmonic electrostatic motors. Sensors Actuators 20:17–24

    Article  Google Scholar 

  4. Sun Y, Gu Z, Liu G, Li Q (2017) Design of measurement and control system for the efficiency test of spacecraft harmonic drive mechanism. In: 8th International Conference on Mechanical and Aerospace Engineering (ICMAE) Prague, Czech Republic, July 22–25, pp 704–708

    Google Scholar 

  5. Liu R, Zhang Y, Wang Y (2015) An efficient conformal mapping method for air gap magnetic field analytical calculation in an eccentric magnetic harmonic gear. In: 2015 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD) Shanghai, China, November 20–23, pp 74–75

    Chapter  Google Scholar 

  6. Judy MW (2004) Evolution of integrated inertial MEMS technology. In: Solid-State Sensor, Actuator and Microsystems Workshop, Hilton Head Island, pp 27–30

    Google Scholar 

  7. Bell DJ, Lu TJ, Fleck NA, Spearing SM (2005) MEMS actuators and sensors: observations on their performance and selection for purpose. J Micromech Microeng 15(7):S153–S164

    Article  Google Scholar 

  8. Fedder GK, Howe RT, Liu T‑JK, Quevy EP (2008) Technologies for cofabricating MEMS and electronics. Proc Ieee 96(2):306–322

    Article  Google Scholar 

  9. Zhao D, Fu YM, Xu LZ (2021) Torque and displacement for a micro electromagnetic harmonic drive system. Forsch Ingenieurwes 85(1):139–151

    Article  Google Scholar 

  10. Batra RC, Porfiri M, Spinello D (2008) Reduced-order models for microelectromechanical rectangular and circular plates incoporating the Casimir force. Int J Solids Struct 45(11–12):3558–3583

    Article  Google Scholar 

  11. Abtahi M, Vossoughi G, Meghdari A (2014) Effects of the van der Waals force, squeeze-film damping, and contact bounce on the dynamics of electrostatic microcantilevers before and after pull-in. Nonlinear Dyn 77(1–2):87–98

    Article  Google Scholar 

  12. Yu J‑Y (1998) Van der Waals force. In: Marshall CP, Fairbridge RW (eds) Geochemistry. Springer, Doordrecht, pp 655–656

    Chapter  Google Scholar 

  13. Koochi A, Noghrehabadi A, Abadyan M (2011) Approximating the effect of van der Waals force on the instability of electrostatic nano-cantilevers. Int J Mod Phys B 25(29):3965–3976

    Article  Google Scholar 

  14. Guan YW, Gao SQ, Shen L, He YL (2013) Study on effect of van der Waals force and Casimir force to Microsystem. Appl Mech Mater 336–338:944–948

    Article  Google Scholar 

  15. Chen C, Li S, Dai L, Qian CZ (2014) Buckling and stability analysis of a piezoelectric viscoelastic nanobeam subjected to van der Waals forces. Commun Nonlinear Sci Numer Simul 19(5):1626–1637

    MathSciNet  Article  Google Scholar 

  16. Bhojawala VM, Vakharia DP (2017) Effect of van der Waals force on pull-in voltage, frequency tuning and frequency stability of NEMS devices. Microsyst Technol 23:1255–1267

    Article  Google Scholar 

  17. Tang Y, Liu Y (2018) Effect of van der Waals force on wave propagation in viscoelastic double-walled carbon nanotubes. Mod Phys Lett B 32(24):1850291

    MathSciNet  Article  Google Scholar 

  18. Lin SM, Tsai CL, Lee HC (2019) Effects of size dependency and axial deformation on the dynamic behavior of an AFM subjected to van der Waals force based on the modified couple stress theory. Precis Eng 56:203–210

    Article  Google Scholar 

  19. Zhao P, Li Y (2020) Correlation between the normal position of a particle on a rough surface and the van der Waals force. Colloids Surfaces A: Physicochem Eng Aspects 585(20):124096

    Article  Google Scholar 

  20. Vanani SMF, Beni YT (2021) Investigation of the surface roughness effect on the nonlinear size-dependent pull-in instability of the beam-type nano-actuator. Indian J Phys 95:253–265

    Article  Google Scholar 

  21. Lee S, Howell S, Raman A, Reifenberger R (2002) Nonliner dynamics of microcantilevers in tappingmode atomic force microscopy: a comparison between theory and experiment. Phys Rev, B Condens Matter 66(11):115409

    Article  Google Scholar 

  22. Batra RC, Porfiri M, Spinello D (2008) Effects of van der Waals force and thermal stresses on pull-in instability of clamped rectangular microplates. Sensors 8(2):1048–1069

    Article  Google Scholar 

  23. Askari AR, Tahani M (2012) Investigating nonlinear vibration of a fully clamped nanobeam in presence of the van der Waals attraction. Appl Mech Mater 226–228:181–185

    Article  Google Scholar 

  24. Caruntu DI, Oyervides R (2014) Primary resonance voltage response of electrostatically actuated M/NEMS circular plate resonators. J Comput Nonlinear Dyn. https://doi.org/10.1115/DSCC2014-6277

    Article  MATH  Google Scholar 

  25. Caruntu DI, Oyervides R (2016) Voltage response of primary resonance of electrostatically actuated MEMS clamped circular plate resonators. J Comput Nonlinear Dyn 11(4):41021

    Article  Google Scholar 

  26. Caruntu DI, Oyervides R (2017) Frequency response reduced order model of primary resonance of electrostatically actuated mems circular plate resonators. Commun Nonlinear Sci Numer Simul 43:261–270

    Article  Google Scholar 

  27. Mohammadian M (2017) Application of the variational iteration method to nonlinear vibrations of nanobeams induced by the van der Waals force under different boundary conditions. Eur Phys J Plus 132:169

    Article  Google Scholar 

  28. Bo S, Cai K, Jiao S, Yi MX, Qin Q (2018) Coupling effect of van der Waals, centrifugal, and frictional forces on a GHz rotation-translation nano-convertor. Phys Chem Chem Phys 21(1):359–368

    Google Scholar 

  29. Korayem AH, Imani F, Korayem MH (2019) Analysis of the atomic force microscopy vibration behavior using the Timoshenko theory by multi-scale method in the air environment. Microsc Res Tech 82(10):1787–1801

    Article  Google Scholar 

  30. Huang Y, Chen J, Zhao M, Feng M (2021) Electromechanical coupling characteristics of double-layer piezoelectric quasicrystal actuators. Int J Mech Sci 196(15):106293

    Article  Google Scholar 

Download references

Funding

This project is supported by National key R & D Program of China (No. 2018YFB1304800) and the Hebei Province Natural Science Foundation in China (No. E2017203021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Xu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Xu, L. & Fu, Y. Nonlinear vibration for a micro electromagnetic harmonic drive system. Forsch Ingenieurwes (2022). https://doi.org/10.1007/s10010-022-00587-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10010-022-00587-x

Keywords

  • Electromagnetic harmonic drive system
  • Nonlinear vibration
  • Van der Waals force
  • Amplitude-frequency characteristics