Skip to main content
Log in

Inspection interval optimization for complex equipment in automotive manufacturing under dependent failures

Optimierung der Inspektionsintervalle für komplexe Geräte in der Automobilherstellung bei abhängigen Ausfällen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Inspection activities in automotive manufacturing play a crucial role in diagnosing and preventing unexpected failures by adopting the well-planned intervals. However, finding the optimal inspection intervals has been a major concern within manufacturing systems due to the failure dependency issue caused by the design complexity and integrated operations. Hence, this paper proposes a new framework for inspection interval optimization under failure dependency in three steps; firstly identifying all failure modes and potential dependent failures through Failure Mode and Effect Analysis (FMEA) method, secondly, adapting the statistical based approach for reliability and availability evaluation, as well as using the Bayesian theory for availability and total expected cost based inspection modeling under failure dependency and finally, performing some well-known Multi-Criteria Decision-Making (MCDM) techniques for finding the optimal trade-off between main criteria e.g. total expected cost and reliability indices. The results of the proposed framework revealed that the failure dependency has a meaningful impact on inspection intervals. Besides, the cost-based model suggests shorter inspection intervals with that of the availability-based model in all dependent failure cases. As a consequence, the results could be useful for implementing the reliable maintenance programs to improve the operational performance of complex equipment in automotive manufacturing.

Zusammenfassung

Inspektionstätigkeiten in der Automobilherstellung spielen eine entscheidende Rolle bei der Diagnose und Vermeidung unvorhergesehener Ausfälle durch die Anwendung gut geplanter Intervalle. Allerdings ist die Bestimmung der optimalen Inspektionsintervalle in Produktionssystemen aufgrund der Fehlerabhängigkeit ein wesentliches Thema, das durch die Komplexität der Konstruktion und die integrierten Prozesse verursacht wird. Deshalb bietet diese Veröffentlichung einen neuen Mechanismus zur Optimierung von Inspektionsintervallen unter Berücksichtigung der Fehlerabhängigkeit in drei Schritten: zunächst Identifikation aller Fehlerarten und möglichen abhängigen Fehler durch die Methode FMEA (Failure Mode and Effect Analysis), zweitens die Anpassung des statistischen Ansatzes für die Zuverlässigkeits- und Verfügbarkeitsanalyse sowie die Verwendung der Bayes’schen Theorie für die Modellierung der Verfügbarkeit und der erwarteten Gesamtkosten bei der Inspektion unter Beachtung der Fehlerabhängigkeit und zum Schluss die Umsetzung verschiedener bekannter MCDM-Techniken (Multi-Criteria Decision-Making) zur Erkennung des optimalen Kompromisses zwischen den Hauptkriterien, z. B. den erwarteten Gesamtkosten und den Zuverlässigkeitsindizes. Die Ergebnisse des vorgestellten Konzepts zeigten, dass die Fehlerabhängigkeit einen deutlichen Einfluss auf die Inspektionsintervalle aufweist. Daneben empfiehlt das kostenorientierte Modell kürzere Inspektionsintervalle im Vergleich zu dem verfügbarkeitsorientierten Modell in allen abhängigen Fehlerfällen. Aus diesem Grunde liefern die Ergebnisse wichtige Hinweise zur Umsetzung von zuverlässigen Wartungsprogrammen, um die Betriebsleistung komplexer Geräte in der Automobilproduktion zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Soltanali H, Garmabaki AHS, Thaduri A, Parida A, Kumar U, Rohani A (2019) Sustainable production process: an application of reliability, availability, and maintainability methodologies in automotive manufacturing. Proc Inst Mech Eng Part O J Risk Reliab 233(4):682–697

    Google Scholar 

  2. Li W, Pham H (2005) An inspection-maintenance model for systems with multiple competing processes. IEEE Trans Reliab 54(2):318–327

    Article  Google Scholar 

  3. Ye Z, Cai Z, Zhou F, Zhao J, Zhang P (2019) Reliability analysis for series manufacturing system with imperfect inspection considering the interaction between quality and degradation. Reliab Eng Syst Saf 189:345–356

    Article  Google Scholar 

  4. Van Horenbeek A, Pintelon L, Muchiri P (2010) Maintenance optimization models and criteria. Int J Syst Assur Eng Manag 1(3):189–200

    Article  Google Scholar 

  5. Bal A, Satoglu SI (2018) Mathematical optimization models for the maintenance policies in production systems. In: Handbook of research on applied optimization methodologies in manufacturing systems. IGI Global, , pp 252–268

    Chapter  Google Scholar 

  6. Rezaei E (2017) A new model for the optimization of periodic inspection intervals with failure interaction: a case study for a turbine rotor. Case Stud Eng Fail Anal 9:148–156

    Article  Google Scholar 

  7. Golmakani HR, Moakedi H (2012) Periodic inspection optimization model for a two-component repairable system with failure interaction. Comput Ind Eng 63(3):540–545

    Article  Google Scholar 

  8. Sheu SH, Chen YC, Wang WY, Shin NH (2003) Economic optimization of off-line inspection with inspection errors. J Oper Res Soc 54(8):888–895

    Article  MATH  Google Scholar 

  9. Mathew S (2004) Optimal inspection frequency: a tool for maintenance planning/forecasting. Int J Qual Reliab Manag 21:763–771

    Article  Google Scholar 

  10. Wang W (2009) An inspection model for a process with two types of inspections and repairs. Reliab Eng Syst Saf 94(2):526–533

    Article  Google Scholar 

  11. Barker CT, Newby MJ (2009) Optimal non-periodic inspection for a multivariate degradation model. Reliab Eng Syst Saf 94(1):33–43

    Article  Google Scholar 

  12. de Almeida AT (2012) Multicriteria model for selection of preventive maintenance intervals. Qual Reliab Eng Int 28(6):585–593

    Article  Google Scholar 

  13. Ahmadi A, Kumar U (2011) Cost based risk analysis to identify inspection and restoration intervals of hidden failures subject to aging. IEEE Trans Reliab 60(1):197–209

    Article  Google Scholar 

  14. Babishin V, Taghipour S (2016) Optimal maintenance policy for multicomponent systems with periodic and opportunistic inspections and preventive replacements. Appl Math Model 40(23–24):10480–10505

    Article  MathSciNet  MATH  Google Scholar 

  15. Jafary B, Nagaraju V, Fiondella L (2017) Impact of correlated component failure on preventive maintenance policies. IEEE Trans Reliab 66(2):575–586

    Article  Google Scholar 

  16. Garmabaki AHS, Ahmadi A, Ahmadi M (2016) Maintenance optimization using multi-attribute utility theory. In: Current trends in reliability, availability, maintainability and safety. Springer, Cham, pp 13–25

    Chapter  Google Scholar 

  17. de Almeida AT, Bohoris GA (1996) Decision theory in maintenance strategy of standby system with gamma-distribution repair-time. IEEE Trans Reliab 45(2):216–219

    Article  Google Scholar 

  18. Brito AJ, de Almeida AT (2009) Multi-attribute risk assessment for risk ranking of natural gas pipelines. Reliab Eng Syst Saf 94(2):187–198

    Article  Google Scholar 

  19. de Almeida AT (2001) Multicriteria decision making on maintenance: spares and contracts planning. Eur J Oper Res 129(2):235–241

    Article  MATH  Google Scholar 

  20. Garmabaki AHS, Ahmadi A, Mahmood YA, Barabadi A (2016) Reliability modelling of multiple repairable units. Qual Reliab Eng Int 32(7):2505–2517

    Article  Google Scholar 

  21. Bukhsh AZ, Stipanovic I, Klanker G, O’Connor A, Doree AG (2019) Network level bridges maintenance planning using Multi-Attribute Utility. Theor Struct Infrastructure Eng 15(7):872–885

    Article  Google Scholar 

  22. Ahmadi A, Gupta S, Karim R, Kumar U (2010) Selection of maintenance strategy for aircraft systems using multi-criteria decision making methodologies. Int J Reliab Qual Saf Eng 17(03):223–243

    Article  Google Scholar 

  23. Chakraborty S (2011) Applications of the MOORA method for decision making in manufacturing environment. Int J Adv Manuf Technol 54(9):1155–1166

    Article  Google Scholar 

  24. Yang JH, Han MY, Zuo QW (2019) Research on optimizing model of single-unit system inspection interval based on RAMS and TOPSIS. In: 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). IEEE, , pp 1088–1095

    Chapter  Google Scholar 

  25. Soltanali H, Rohani A, Tabasizadeh M, Abbaspour-Fard MH, Parida A (2020) An improved fuzzy inference system-based risk analysis approach with application to automotive production line. Neural Comput Appl 32(14):10573–10591

    Article  Google Scholar 

  26. Soltanali H, Rohani A, Abbaspour-Fard MH, Farinha JT (2021) A comparative study of statistical and soft computing techniques for reliability prediction of automotive manufacturing. Appl Soft Comput 98:106738

    Article  Google Scholar 

  27. AGRAMKOW Co. (2014) Manual instructions of line-side Brake fluid filling equipment. Augustenborg Landevej 19DK-6400 Sønderborg, Denmark. https://www.agramkow.com. Accessed 11 Mar 2021

  28. Stamatelatos M, Dezfuli H, Apostolakis G, Everline C, Guarro S, Mathias D, Youngblood R (2011) Probabilistic risk assessment procedures guide for NASA managers and practitioners. https://doi.org/10.13140/RG.2.2.18206.13122

  29. Louit DM, Pascual R, Jardine AK (2009) A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data. Reliab Eng Syst Saf 94(10):1618–1628

    Article  Google Scholar 

  30. Barabady J, Kumar U (2008) Reliability analysis of mining equipment: a case study of a crushing plant at Jajarm bauxite mine in Iran. Reliab Eng Syst Saf 93(4):647–653

    Article  Google Scholar 

  31. Kumar U, Klefsjö B (1992) Reliability analysis of hydraulic systems of LHD machines using the power law process model. Reliab Eng Syst Saf 35(3):217–224

    Article  Google Scholar 

  32. Garmabaki AHS, Ahmadi A, Block J, Pham H, Kumar U (2016) A reliability decision framework for multiple repairable units. Reliab Eng Syst Saf 150:78–88

    Article  Google Scholar 

  33. Soltanali H, Rohani A, Tabasizadeh M, Abbaspour-Fard MH, Parida A (2020) Operational reliability evaluation-based maintenance planning for automotive production line. Qual Technol Quant Manag 17(2):186–202

    Article  Google Scholar 

  34. Tsarouhas PH (2015) Maintainability analysis in the yogurt industry. Int J Syst Assur Eng Manag 6(2):119–128

    Article  Google Scholar 

  35. Department of Defense (1981) Department of defense handbook reliability growth management. MIL-HDBK-189. Department of Defense, Washington DC

    Google Scholar 

  36. Jardine AK, Tsang AH (2005) Maintenance, replacement, and reliability: theory and applications. CRC press,

    Book  MATH  Google Scholar 

  37. Blanchard BS, Fabrycky WJ, Fabrycky WJ (1990) Systems engineering and analysis vol 4. Prentice hall, Englewood Cliffs

    Google Scholar 

  38. Kanoun K, de Bastos Martini MR, De Souza JM (1991) A method for software reliability analysis and prediction application to the TROPICO‑R switching system. IEEE Trans Softw Eng 17(4):334

    Article  Google Scholar 

  39. Huang W, Dietrich DL (2005) An alternative degradation reliability modeling approach using maximum likelihood estimation. IEEE Trans Reliab 54(2):310–317

    Article  Google Scholar 

  40. Ruschel E, Santos EAP, Loures EDFR (2020) Establishment of maintenance inspection intervals: an application of process mining techniques in manufacturing. J Intell Manuf 31(1):53–72

    Article  Google Scholar 

  41. Kallen MJ, Van Noortwijk JM (2005) Optimal maintenance decisions under imperfect inspection. Reliab Eng Syst Saf 90(2–3):177–185

    Article  Google Scholar 

  42. Flage R, Coit DW, Luxhøj JT, Aven T (2012) Safety constraints applied to an adaptive Bayesian condition-based maintenance optimization model. Reliab Eng Syst Saf 102:16–26

    Article  Google Scholar 

  43. Yazdi M, Soltanali H (2019) Knowledge acquisition development in failure diagnosis analysis as an interactive approach. Int J Interact Des Manuf 13(1):193–210

    Article  Google Scholar 

  44. Yazdi M, Daneshvar S, Setareh H (2017) An extension to fuzzy developed failure mode and effects analysis (FDFMEA) application for aircraft landing system. Saf Sci 98:113–123

    Article  Google Scholar 

  45. Cahyapratama A, Sarno R (2018) Application of analytic hierarchy process (AHP) and simple additive weighting (SAW) methods in singer selection process. In: 2018 International Conference on Information and Communications Technology (ICOIACT). IEEE, , pp 234–239

    Chapter  Google Scholar 

  46. Brauers WK, Zavadskas EK (2006) The MOORA method and its application to privatization in a transition economy. Control Cybern 35(2):445–469

    MathSciNet  MATH  Google Scholar 

  47. Zavadskas EK, Kalibatas D, Kalibatiene D (2016) A multi-attribute assessment using WASPAS for choosing an optimal indoor environment. Arch Civ Mech Eng 16(1):76–85

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Ferdowsi University of Mashhad, Iran (No. FUM-52316), which has been research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Khojastehpour.

Ethics declarations

Conflict of interest

H. Soltanali, M. Khojastehpour, E. Rezaei and A. Rohani declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltanali, H., Khojastehpour, M., Rezaei, E. et al. Inspection interval optimization for complex equipment in automotive manufacturing under dependent failures. Forsch Ingenieurwes 86, 105–122 (2022). https://doi.org/10.1007/s10010-021-00568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00568-6

Navigation