Skip to main content
Log in

Gear root bending strength: statistical treatment of Single Tooth Bending Fatigue tests results

Conference Proceedings

Zahnfußbiegefestigkeit: Statistische Behandlung der Ergebnisse von den STBF-Versuchen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Gear tooth failure due to tooth root bending fatigue is one of the most dangerous failure modes in gears. Therefore, the precise definition of gear bending fatigue strength is a key aspect. Furthermore, in order to calculate the service life of a gear component, an accurate estimation of the S‑N curve is required. This curve must properly account for the slope of the fatigue strength region, the slope of the region ahead the fatigue knee, as well as the position of the knee itself. Hence, in order obtain a curve at different reliability levels, a proper estimation of the dispersion associated with the experimental points is required. Usually, Single Tooth Bending Fatigue (STBF) tests are used to investigate the gear load carrying capacity with respect to the bending failure mode. Then, starting from the gear specimen test data, the S‑N curve that has to be used in the rating method has to be determined. Maximum Likelihood Estimation (MLE), a statistical tool capable of considering also interrupted tests (e.g. runouts) has been used to estimate, in the most reliable way, the S‑N curve from experimental points. Furthermore, if the STBF test is performed in a symmetrical configuration, i.e. two teeth loaded at the same time, also the survival of one of the two teeth represents an information that can be taken into account thanks to MLE.

Moreover, additional effects must be considered to obtain the S‑N curve of a real component starting from STBF tests. In reality, the load history and the statistical behaviour are different, since in a meshing gear the strength is determined by its weakest tooth, while in a STBF test the failing tooth is predetermined. The latter effect is considered by means of the statistic of extremes, which enables the estimation of the strength of the weakest tooth and therefore of the gear. This paper describes in detail the proposed calculation method and explains its application to determine the S‑N curve in practical cases.

Zusammenfassung

Versagen von Verzahnungen aufgrund von Zahnfußbiegeermüdung ist eine der gefährlichsten Versagensarten von Zahnrädern. Daher ist die genaue Definition der Biegewechselfestigkeit von Getrieben ein wichtiger Aspekt. Zur Berechnung der Lebensdauer einer Komponente eines Getriebes ist die genaue Schätzung der Wöhlerkurve erforderlich. Diese Kurve muss die Neigung des Ermüdungsfestigkeitsbereichs, die Neigung des Bereichs der Ermüdungsknie sowie die Position des Knies selbst richtig berücksichtigen. Um eine Kurve mit unterschiedlichen Zuverlässigkeitsniveaus zu erhalten, ist daher eine zuverlässige Schätzung der Streuung in Verbindung mit den experimentellen Punkten erforderlich. Üblicherweise werden Single-Tooth Bending-Fatigue(STBF)-Versuche verwendet, um die Getriebetragfähigkeit in Bezug auf den Biegeversagensmodus zu untersuchen. Ausgehend von den Prüfdaten des Zahnradmusters muss dann die Wöhlerkurve bestimmt werden, die im Bewertungsverfahren verwendet werden muss. Die Maximum-Likelihood-Schätzung (MLE), ein statistisches Werkzeug, das auch unterbrochene Tests verwaltet: wird der STBF-Versuch in einer symmetrischen Konfiguration durchgeführt, d. h. zwei Zähne gleichzeitig belastet, stellt auch das Überleben eines der beiden Zähne eine Information dar, die dank der MLE berücksichtigt werden kann.

Darüber hinaus müssen zusätzliche Effekte berücksichtigt werden, um ausgehend von STBF-Versuche die Wöhlerlinie eines realen Bauteils zu erhalten. In Wirklichkeit sind die Belastungshistorie und das statistische Verhalten unterschiedlich, da bei einem Zahnrad die Festigkeit durch den schwächsten Zahn bestimmt wird, während bei einem STBF-Versuch der ausfallende Zahn vorgegeben wird. Letzterer Effekt wird durch die Extremwertstatistik berücksichtigt, die eine Abschätzung der Festigkeit des schwächsten Zahnes und damit des Zahnrades ermöglicht. Dieses Veröffentlichung beschreibt ausführlich das vorgeschlagene Berechnungsverfahren und erläutert seine Anwendung zur Bestimmung der Wöhlerlinie in praktischen Fällen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ISO 6336-3:2019—Calculation of load capacity of spur and helical gears—Part 3: Calculation of tooth bending strength. .

  2. ANSI~Standard, “Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth,” Am. Gear Manuf. Assoc. Alexandria, 2004.

  3. ISO~6336‑5, “Calculation of Load capacity of Spur and Helical Gears, Part 5: Strength and quality of materials,” Int. Stand. Organ. Geneva, 2006.

  4. Hein M, Geitner M, Tobie T, Stahl K, Pinnekamp B (2018) Reliability of gears—determination of statistically validated material strength numbers

    Google Scholar 

  5. ISO 6336-6:2019, “Calculation of Load capacity of Spur and Helical Gears, Part 6: Calculation of service life under variable load,” Geneva, CH, 2019.

  6. Beretta S (2010) Affidabilità delle costruzioni meccaniche: Strumenti e metodi per l’affidabilità di un progetto. Springer, Berlin Heidelberg

    MATH  Google Scholar 

  7. Hong IJ, Kahraman A, Anderson N (2020) A rotating gear test methodology for evaluation of high-cycle tooth bending fatigue lives under fully reversed and fully released loading conditions. Int J Fatigue 133:105432

    Article  Google Scholar 

  8. Rao SB, McPherson DR (2003) Experimental characterization of bending fatigue strength in gear teeth. Gear Technol 20(1):25–32

    Google Scholar 

  9. Stahl K (1999) Lebensdauerstatistik. Abschlussbericht: Forschungsvorhaben Nr. 304. FVA,

    Google Scholar 

  10. Benedetti M, Fontanari V, Höhn B‑R, Oster P, Tobie T (2002) Influence of shot peening on bending tooth fatigue limit of case hardened gears. Int J Fatigue 24(11):1127–1136

    Article  Google Scholar 

  11. McPherson DR, Rao SB (2008) Methodology for translating single-tooth bending fatigue data to be comparable to running gear data. Gear Technol. 25:42–51

    Google Scholar 

  12. SAE (2017) J1619, single tooth gear bending fatigue test. SAE International.

    Google Scholar 

  13. Güntner C, Tobie T, Stahl K (2017) Influences of the residual stress condition on the load-carrying capacity of case-hardened gears. Am. Gear Manuf. Assoc. AGMA Tech. Pap. 17FTM20

    Google Scholar 

  14. Winkler KJ, Schurer S, Tobie T, Stahl K (2019) Investigations on the tooth root bending strength and the fatigue fracture characteristics of case-carburized and shot-peened gears of different sizes. Proc Inst Mech Eng Part C J Mech Eng Sci 233(21–22):7338–7349

    Article  Google Scholar 

  15. Koenig J, Hoja S, Tobie T, Hoffmann F, Stahl K (2019) Increasing the load carrying capacity of highly loaded gears by nitriding. MATEC Web Conf 287:2001

    Article  Google Scholar 

  16. Medlin D, Cornelissen B, Matlock D, Krauss G et al (1999) Effect of Thermal Treatments and Carbon Potential on Bending Fatigue Performance of SAE 4320 Gear Steel. SAE Technical Paper 1999-01-0603. https://doi.org/10.4271/1999-01-0603

    Article  Google Scholar 

  17. Spice J, Matlock D, Fett G (2002) Optimized Carburized Steel Fatigue Performance as Assessed with Gear and Modified Brugger Fatigue Tests. SAE Technical Paper 2002-01-1003. https://doi.org/10.4271/2002-01-1003

    Article  Google Scholar 

  18. Vilela Costa L, Corrêa de Oliveira D, Wallace D et al (2020) Bending Fatigue in Low-Pressure Carbonitriding of Steel Alloys with Boron and Niobium Additions. J. of Materi Eng and Perform 29:3593–3602. https://doi.org/10.1007/s11665-020-04757-2

    Article  Google Scholar 

  19. Bonaiti L, Bayoumi ABM, Concli F, Rosa F, Gorla C (2021) Gear root bending strength: a comparison between Single Tooth Bending Fatigue Tests and meshing gears. J Mech Des. https://doi.org/10.1115/1.4050560

    Article  Google Scholar 

  20. Rettig H (1987) Ermittlung von Zahnfußfestigkeits-Kennwerten auf Verspannungsprüfständen und Pulsatoren—Vergleich der Prüfverfahren und gewonnenen Kennwerte. Antriebstechnik 26:51–55

    Google Scholar 

  21. Nelson WB (2003) Applied life data analysis vol 521. John Wiley & Sons,

    MATH  Google Scholar 

  22. Nelson WB (2009) Accelerated testing: statistical models, test plans, and data analysis vol 344. John Wiley & Sons,

    Google Scholar 

  23. Spindel JE, Haibach E (1981) Some considerations in the statistical determination of the shape of SN curves. In: Statistical analysis of fatigue data ASTM International.

    Google Scholar 

  24. Beretta S, Clerici P, Matteazzi S (1995) The effect of sample size on the confidence of endurance fatigue tests. Fatigue Fract Eng Mater Struct 18(1):129–139

    Article  Google Scholar 

  25. Lorén S (2003) Fatigue limit estimated using finite lives. Fatigue Fract Eng Mater Struct 26(9):757–766

    Article  Google Scholar 

  26. Pascual FG, Meeker WQ (1999) Estimating fatigue curves with the random fatigue-limit model. Technometrics 41(4):277–289

    Article  Google Scholar 

  27. Wallin K (1999) The probability of success using deterministic reliability. In: European structural integrity society, vol 23. Elsevier, , pp 39–50

    Google Scholar 

  28. Marquis G, Mikkola T (2002) Analysis of welded structures with failed and non-failed welds based on maximum likelihood. Weld World 46(1):15–22

    Article  Google Scholar 

  29. Krantz TL (2002) The influence of roughness on gear surface fatigue. Case Western Reserve University Cleveland, Ohio

    Google Scholar 

  30. Gasparini G, Mariani U, Gorla C, Filippini M, Rosa F (2008) Bending fatigue tests of helicopter case carburized gears: Influence of material, design and manufacturing parameters. In: American Gear Manufacturers Association (AGMA) Fall Technical Meeting, pp 131–142

    Google Scholar 

  31. Gorla C, Rosa F, Conrado E, Concli F (2017) Bending fatigue strength of case carburized and nitrided gear steels for aeronautical applications. Int J Appl Eng Res 12(21):11306–11322

    Google Scholar 

  32. Gorla C, Conrado E, Rosa F, Concli F (2018) Contact and bending fatigue behaviour of austempered ductile iron gears. Proc Inst Mech Eng Part C J Mech Eng Sci 232(6):998–1008

    Article  Google Scholar 

  33. Gorla C, Rosa F, Conrado E, Albertini H (2014) Bending and contact fatigue strength of innovative steels for large gears. Proc Inst Mech Eng Part C J Mech Eng Sci 228(14):2469–2482

    Article  Google Scholar 

  34. Gorla C, Rosa F, Concli F, Albertini H (2012) Bending fatigue strength of innovative gear materials for wind turbines gearboxes: effect of surface coatings. In: ASME 2012 International Mechanical Engineering Congress and Exposition, pp 3141–3147

    Google Scholar 

  35. Conrado E, Gorla C, Davoli P, Boniardi M (2017) A comparison of bending fatigue strength of carburized and nitrided gears for industrial applications. Eng Fail Anal 78:41–54

    Article  Google Scholar 

  36. Bonaiti L, Concli F, Gorla C, Rosa F (2019) Bending fatigue behaviour of 17‑4 PH gears produced via selective laser melting. Proc Struct Integr. https://doi.org/10.1016/j.prostr.2020.02.068

    Article  Google Scholar 

  37. Concli F et al (2021) Bending fatigue behavior of 17-4 ph gears produced by additive manufacturing. Appl Sci 11(7):3019. https://doi.org/10.3390/app11073019

    Article  Google Scholar 

  38. Colombo S (2019) Advanced Statistical Models for Bending Fatigue Characterization of Gears. Politecnico di Milano, Milan, Italy. http://hdl.handle.net/10589/165633

    Google Scholar 

  39. Dobler D‑IA, Hergesell IM, Stahl IK (2016) Increased tooth bending strength and pitting load capacity of fine-module gears. Gear Technol 33(7):48–53

    Google Scholar 

  40. Concli F (2021) Tooth root bending strength of gears: dimensional effect for small gears having a module below 5 mm. Appl Sci 11(5):2416

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude prof. Stefano Beretta for his invaluable support during the validation of this statistical model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bonaiti.

Ethics declarations

Conflict of interest

L. Bonaiti, F. Rosa, P. M. Rao, F. Concli and C. Gorla declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaiti, L., Rosa, F., Rao, P.M. et al. Gear root bending strength: statistical treatment of Single Tooth Bending Fatigue tests results. Forsch Ingenieurwes 86, 251–258 (2022). https://doi.org/10.1007/s10010-021-00567-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00567-7

Navigation