Skip to main content
Log in

Research subjects and hot topics of foil bearings performance in recent twenty years: analysis and prediction

Forschungsthemen und Heiße Themen der Leistung von Folienlagern in den letzten zwanzig Jahren: Analyse und Vorhersage

  • Übersichtsarbeiten/Review articles
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

As one kind of gas bearings, foil bearings that are commonly made of one top foil and at least one bottom foil, have many attractive advantages such as low power loss, wide work temperature range, high rotating speed, low maintenance cost, simple system construct, etc. Nevertheless, foil bearings also have some disadvantages including low carrying load at low speed, wear at start-stop procedure, not easy to predict bearing performance due to the complex bearing structure and so on.

For the sake of better understanding and further utilization of foil bearings, many researchers, institutions and countries have paid great attention to study these special rolling elements in recent decades. The purpose of this paper is to explore the research status of foil bearings performance based on the Web of Science datasets and related tools, meanwhile, the cooperative relationship among individuals or organizations is further studied. Moreover, to figure out influential countries, institutions and authors, the analysis of cited frequency is adopted. In addition, keywords frequency analysis and co-occurrence analysis are applied to explore the future trend of foil bearing. The results identify influential countries, institutions and authors in the research of foil bearings performance and show that whether in quantity or in quality, research of foil bearings performance in developed countries holds a significant lead over that in developing countries. Moreover, the current hot topics are figured out as well as future direction of development is predicted. This study presents intuitive state of research of foil bearings performance and proposes a fresh perspective for relevant researchers to perform foil bearings research in the future.

Zusammenfassung

Als eine Art von Gaslagern haben Folienlager, die üblicherweise aus einer oberen Folie und mindestens einer unteren Folie bestehen, viele attraktive Vorteile wie geringe Verlustleistung, großer Arbeitstemperaturbereich, hohe Drehzahl, geringe Wartungskosten, einfacher Systembau usw. Dennoch haben Folienlager auch einige Nachteile, darunter geringe Traglast bei niedriger Drehzahl, Verschleiß bei Start-Stopp-Verfahren, nicht einfach vorherzusagende Lagerleistung aufgrund der komplexen Tragstruktur und so weiter.

Um Folienlager besser zu verstehen und weiter zu nutzen, haben viele Forscher, Institutionen und Länder in den letzten Jahrzehnten große Aufmerksamkeit darauf verwendet, diese speziellen Wälzkörper zu untersuchen. Der Zweck dieses Papiers ist es, den Forschungsstatus der Leistung von Folienlagern basierend auf den Web of Science-Datensätzen und verwandten Werkzeugen zu untersuchen, während die kooperative Beziehung zwischen Einzelpersonen oder Organisationen weiter untersucht wird. Um einflussreiche Länder, Institutionen und Autoren herauszufinden, wird außerdem die Analyse der zitierten Häufigkeit durchgeführt. Darüber hinaus werden Schlüsselwörter Häufigkeitsanalyse und Co-Occurrence-Analyse verwendet, um den zukünftigen Trend der Folienlager zu untersuchen. Die Ergebnisse identifizieren einflussreiche Länder, Institutionen und Autoren in der Erforschung der Leistung von Folienlagern und zeigen, dass die Forschung zur Leistung von Folienlagern in Industrieländern einen signifikanten Vorsprung gegenüber der in Entwicklungsländern hat, ob quantitativ oder qualitativ. Darüber hinaus werden die aktuellen Top-Themen herausgefunden und die zukünftige Entwicklungsrichtung prognostiziert. Diese Studie präsentiert den intuitiven Forschungsstand der Leistung von Folienlagern und bietet eine neue Perspektive für relevante Forscher, um in Zukunft Folienlagerforschung durchzuführen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Samanta P, Murmu NC, Khonsari MM (2019) The evolution of foil bearing technology. Tribol Int 135:305–323. https://doi.org/10.1016/j.triboint.2019.03.021

    Article  Google Scholar 

  2. Branagan M, Griffin D, Goyne C, Untaroiu A (2016) Compliant gas foil bearings and analysis tools. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4031628

    Article  Google Scholar 

  3. Feng K, Kaneko S (2010) Analytical model of bump-type foil bearings using a link-spring structure and a finite-element shell model. J Tribol. https://doi.org/10.1115/1.4001169

    Article  Google Scholar 

  4. Osborne DA, San Andres L (2006) Experimental response of simple gas hybrid bearings for oil-free turbomachinery. J Eng Gas Turbine Power 128(3):626–633. https://doi.org/10.1115/1.1839922

    Article  Google Scholar 

  5. DellaCorte C, Bruckner RJ (2011) Remaining technical challenges and future plans for oil-free turbomachinery. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4002271

    Article  Google Scholar 

  6. Li Y, Lei G, Sun Y, Wang L (2017) Effect of environmental pressure enhanced by a booster on the load capacity of the aerodynamic gas bearing of a turbo expander. Tribol Int 105:77–84. https://doi.org/10.1016/j.triboint.2016.09.027

    Article  Google Scholar 

  7. Lai T, Guo Y, Zhao Q, Wang Y, Zhang X, Hou Y (2018) Numerical and experimental studies on stability of cryogenic turbo-expander with protuberant foil gas bearings. Cryogenics 96:62–74. https://doi.org/10.1016/j.cryogenics.2018.10.009

    Article  Google Scholar 

  8. Zheng YQ, Chen ST, Lai TW, Zhang XQ, Hou Y (2016) Numerical and experimental study on the dynamic characteristics of the foil journal bearing with double-layer protuberant support. J Adv Mech Des Syst Manuf. https://doi.org/10.1299/jamdsm.2016jamdsm0027

    Article  Google Scholar 

  9. Yang SJ, Liu Z, Fu B (2019) Simulation and evaluation on the dynamic performance of a cryogenic turbo-based reverse Brayton refrigerator. Appl Sci. https://doi.org/10.3390/app9030531

    Article  Google Scholar 

  10. Kim D, Ki J, Kim Y, Ahn K (2012) Extended three-dimensional thermo-hydrodynamic model of radial foil bearing: case studies on thermal behaviors and dynamic characteristics in gas turbine simulator. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4005215

    Article  Google Scholar 

  11. Kim TH, Lee YB, Kim TY, Jeong KH (2012) Rotordynamic performance of an oil-free turbo blower focusing on load capacity of gas foil thrust bearings. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4004143

    Article  Google Scholar 

  12. Kim K‑S, Lee I (2007) Vibration characteristics of a 75 kW turbo machine with air foil bearings. J Eng Gas Turbine Power 129(3):843–849. https://doi.org/10.1115/1.2718220

    Article  Google Scholar 

  13. Kus B, Neksa P (2013) Development of one-dimensional model for initial design and evaluation of oil-free CO2 turbo-compressor. Int J Refrig 36(8):2079–2090. https://doi.org/10.1016/j.ijrefrig.2013.05.009

    Article  Google Scholar 

  14. Bhore SP, Darpe AK (2014) Rotordynamics of micro and mesoscopic turbomachinery—A review. J Vib Eng Technol 2(1):1–9

    Google Scholar 

  15. Kim D (2016) Design space of foil bearings for closed-loop supercritical CO2 power cycles based on three-dimensional thermohydrodynamic analyses. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4031433

    Article  Google Scholar 

  16. Seo J, Lim H‑S, Park J, Park MR, Choi BS (2017) Development and experimental investigation of a 500‑W class ultra micro gas turbine power generator. Energy 124:9–18. https://doi.org/10.1016/j.energy.2017.02.012

    Article  Google Scholar 

  17. Lee YB, Park DJ, Kim CH, Ryu K (2007) Rotordynamic characteristics of a micro turbo generator supported by air foil bearings. J Micromech Microeng 17(2):297–303. https://doi.org/10.1088/0960-1317/17/2/016

    Article  Google Scholar 

  18. Kim D, Lee AS, Choi BS (2014) Evaluation of foil bearing performance and nonlinear rotordynamics of 120 kW oil-free gas turbine generator. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4025898

    Article  Google Scholar 

  19. Cho J, Shin H, Cho J, Kang YS, Ra HS, Roh C et al (2017) Preliminary experimental study of a supercritical CO2 power cycle test loop with a high-speed turbo-generator using R134a under similarity conditions. Front Energy 11(4):452–460. https://doi.org/10.1007/s11708-017-0504-4

    Article  Google Scholar 

  20. Hong DK, Jeong YH, Woo BC, Kim TH (2018) Electric-mechanical performance analysis of high speed motor for electric turbo charger. Int J Appl Electromagn Mech 57:S125–S133. https://doi.org/10.3233/jae-182303

    Article  Google Scholar 

  21. Hong DK, Jeong YH (2019) Multiphysics analysis of a high speed PMSM for electric turbo charger. Int J Appl Electromagn Mech 59(3):835–843. https://doi.org/10.3233/jae-171239

    Article  Google Scholar 

  22. Salehi M, Heshmat H, Walton JF II, Tomaszewski M (2007) Operation of a mesoscopic gas turbine simulator at speeds in excess of 700,000 rpm on foil bearings. J Eng Gas Turbine Power 129(1):170–176. https://doi.org/10.1115/1.2360600

    Article  Google Scholar 

  23. Kim D, Creary A, Chang SS, Kim JH (2009) Mesoscale foil gas bearings for palm-sized turbomachinery: design, manufacturing, and modeling. J Eng Gas Turbine Power. https://doi.org/10.1115/1.3077643

    Article  Google Scholar 

  24. Guo Y, Hou Y, Zhao Q, Ren XH, Lai TW (2020) Application of multi-leaf foil bearings in high-speed turbo-machinery. J Adv Mech Des Syst Manuf. https://doi.org/10.1299/jamdsm.2020jamdsm0085

    Article  Google Scholar 

  25. Dykas B, Howard SA (2005) Journal design considerations for turbomachine shafts supported on foil air bearings. Tribol Lubr Technol 61(3):46–54

    Google Scholar 

  26. Wang JJ, Zhao X, Guo XX, Li BL (2018) Analyzing the research subjects and hot topics of power system reliability through the Web of Science from 1991 to 2015. Renew Sustain Energy Rev 82:700–713

    Article  Google Scholar 

  27. Sim K, Lee Y‑B, Song JW, Kim TH (2018) Effect of cooling flow on thermal performance of a gas foil bearing floating on a hot rotor. J Mech Sci Technol 32(5):1939–1954. https://doi.org/10.1007/s12206-018-0401-8

    Article  Google Scholar 

  28. Sim K, Lee Y‑B, Jang S‑M, Kim TH (2015) Thermal analysis of high-speed permanent magnet motor with cooling flows supported on gas foil bearings: part II—Bearing modeling and case studies. J Mech Sci Technol 29(12):5477–5483. https://doi.org/10.1007/s12206-015-1149-z

    Article  Google Scholar 

  29. Sim K, Lee Y‑B, Jang S‑M, Kim TH (2015) Thermal analysis of high-speed permanent magnet motor with cooling flows supported on gas foil bearings: part I—Coupled thermal and loss modeling. J Mech Sci Technol 29(12):5469–5476. https://doi.org/10.1007/s12206-015-1148-0

    Article  Google Scholar 

  30. Sim K, Lee Y‑B, Song JW, Kim J‑B, Kim TH (2014) Identification of the dynamic performance of a gas foil journal bearing operating at high temperatures. J Mech Sci Technol 28(1):43–51. https://doi.org/10.1007/s12206-013-0945-6

    Article  Google Scholar 

  31. Sim K, Lee Y‑B, Kim TH (2014) Rotordynamic analysis of an oil-free turbocharger supported on lobed gas foil bearings-predictions versus test data. Tribol Trans 57(6):1086–1095. https://doi.org/10.1080/10402004.2014.937885

    Article  Google Scholar 

  32. Sim K, Koo B, Lee JS, Kim TH (2014) Effects of mechanical preloads on the rotordynamic performance of a rotor supported on three-pad gas foil journal bearings. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4027745

    Article  Google Scholar 

  33. Choe BS, Kim TH, Kim CH, Lee YB (2015) Rotordynamic behavior of 225 kW (300 HP) class PMS motor-generator system supported by gas foil bearings. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4029712

    Article  Google Scholar 

  34. San Andres L, Ryu K, Kim TH (2011) Thermal management and rotordynamic performance of a hot rotor-gas foil bearings system-part I: measurements. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4001826

    Article  Google Scholar 

  35. San Andres L, Ryu K, Kim TH (2011) Thermal management and rotordynamic performance of a hot rotor-gas foil bearings system-part II: predictions versus test data. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4001827

    Article  Google Scholar 

  36. San Andres L, Ryu K, Kim TH (2011) Identification of structural stiffness and energy dissipation parameters in a second generation foil bearing: effect of shaft temperature. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4002317

    Article  Google Scholar 

  37. Andres L‑S, Chirathadam TA, Ryu K, Kim TH (2010) Measurements of drag torque, lift-off journal speed, and temperature in a metal mesh foil bearing. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4000863

    Article  Google Scholar 

  38. Zheng Y, Lai T, Chen S, Chen L, Liu L, Hou Y (2017) Static characteristics of six pads multilayer protuberant foil thrust bearings. Proc Inst Mech Eng Part J: J Eng Tribol 231(2):158–164. https://doi.org/10.1177/1350650116649328

    Article  Google Scholar 

  39. Lai T, Chen S, Ma B, Zheng Y, Hou Y (2014) Effects of bearing clearance and supporting stiffness on performances of rotor-bearing system with multi-decked protuberant gas foil journal bearing. Proc Inst Mech Eng Part J: J Eng Tribol 228(7):780–788. https://doi.org/10.1177/1350650114531406

    Article  Google Scholar 

  40. Hou Y, Zheng Y, Chen S, Liu X, Lai T (2015) The numerical study of static and dynamic characteristics of multi-layer protuberant foil bearing. J Adv Mech Des Syst Manuf. https://doi.org/10.1299/jamdsm.2015jamdsm0058

    Article  Google Scholar 

  41. Hou Y, Ma B, Yang S, Chen X, Zheng Y, Chen S (2015) Experimental study on bump-foil gas bearing with different diametric clearance configurations. J Mech Sci Technol 29(5):2089–2095. https://doi.org/10.1007/s12206-015-0430-5

    Article  Google Scholar 

  42. Hou Y, Lai T, Ma B, Zheng Y, Chen S (2013) Experimental investigation on the multi-decked protuberant gas foil journal bearing. J Adv Mech Des Syst Manuf 7(4):791–799. https://doi.org/10.1299/jamdsm.7.791

    Article  Google Scholar 

  43. Lai T, Chen S, Ma B, Liu L, Hou Y (2016) Preliminary experimental study on static loading characteristics of multi-decked protuberant foil thrust bearing. J Adv Mech Des Syst Manuf. https://doi.org/10.1299/jamdsm.2016jamdsm0008

    Article  Google Scholar 

  44. Chen S, Yang S, Fu B, Zhang Q, Hou Y (2015) Study on the dynamic performance of the helium turboexpander for EAST subsystems. Plasma Sci Technol 17(6):517–523. https://doi.org/10.1088/1009-0630/17/6/13

    Article  Google Scholar 

  45. Kim TH, San Andrés L (2006) Limits for high-speed operation of gas foil bearings. J Tribol 128(3):670. https://doi.org/10.1115/1.2197851

    Article  Google Scholar 

  46. San Andres L, Chirathadam TA, Kim T‑H (2010) Measurement of structural stiffness and damping coefficients in a metal mesh foil bearing. J Eng Gas Turbine Power. https://doi.org/10.1115/1.3159379

    Article  Google Scholar 

  47. Kim TH, Breedlove AW, San Andres L (2009) Characterization of a foil bearing structure at increasing temperatures: static load and dynamic force performance. J Tribol. https://doi.org/10.1115/1.3195042

    Article  Google Scholar 

  48. Kim TH, Andres LS (2007) Analysis of advanced gas foil bearings with piecewise linear elastic supports. Tribol Int 40(8):1239–1245. https://doi.org/10.1016/j.triboint.2007.01.022

    Article  Google Scholar 

  49. Kim TH, Andres LS (2009) Effects of a mechanical preload on the dynamic force response of gas foil bearings: measurements and model predictions. Tribol Trans 52(4):569–580. https://doi.org/10.1080/10402000902825721

    Article  Google Scholar 

  50. Kim TH, Andres LS (2009) Effect of side feed pressurization on the dynamic performance of gas foil bearings: a model anchored to test data. J Eng Gas Turbine Power. https://doi.org/10.1115/1.2966421

    Article  Google Scholar 

  51. Andres LS, Rubio D, Kim TH (2007) Rotordynamic performance of a rotor supported on bump type foil gas bearings: experiments and predictions. J Eng Gas Turbine Power 129(3):850–857. https://doi.org/10.1115/1.2718233

    Article  Google Scholar 

  52. Andres LS, Kim TH (2008) Forced nonlinear response of gas foil bearing supported rotors. Tribol Int 41(8):704–715. https://doi.org/10.1016/j.triboint.2007.12.009

    Article  Google Scholar 

  53. Sim K, Yong-Bok L, Kim TH, Lee J (2012) Rotordynamic performance of shimmed gas foil bearings for oil-free turbochargers. J Tribol. https://doi.org/10.1115/1.4005892

    Article  Google Scholar 

  54. Kim TH, Song JW, Lee Y‑B, Sim K (2012) Thermal performance measurement of a bump type gas foil bearing floating on a hollow shaft for increasing rotating speed and static load. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4004401

    Article  Google Scholar 

  55. Guo Y, Hou Y, Wang Y, Zhao Q, Zheng Y, Lai T (2019) Numerical analysis of aerodynamic lubricated double-decked protuberant foil thrust bearing. J Adv Mech Des Syst Manuf. https://doi.org/10.1299/jamdsm.2019jamdsm0056

    Article  Google Scholar 

  56. Lai T, Guo Y, Wang W, Wang Y, Hou Y (2017) Development and application of integrated aerodynamic protuberant foil journal and thrust bearing in turboexpander. Int J Rotating Mach. https://doi.org/10.1155/2017/8430943

    Article  Google Scholar 

  57. Hou Y, Yang S, Chen X, Chen S, Lai T (2015) Study on the matching performance of a low temperature reverse Brayton air refrigerator. Energy Convers Manag 89:339–348. https://doi.org/10.1016/j.enconman.2014.09.078

    Article  Google Scholar 

  58. Lee D, Kim D (2017) Design and performance prediction of hybrid air foil thrust bearings (vol 133, 042501, 2010). J Eng Gas Turbine Power. https://doi.org/10.1115/1.4035913

    Article  Google Scholar 

  59. Lee D, Kim D (2011) Design and performance prediction of hybrid air foil thrust bearings. J Eng Gas Turbine Power. https://doi.org/10.1115/1.4002249

    Article  Google Scholar 

  60. Zhao Z, Feng K, Zhao X, Liu W (2018) Identification of dynamic characteristics of hybrid bump-metal mesh foil bearings. J Tribol. https://doi.org/10.1115/1.4039721

    Article  Google Scholar 

  61. Feng K, Liu L‑J, Guo Z‑Y, Zhao X‑Y (2016) Parametric study on static and dynamic characteristics of bump-type gas foil thrust bearing for oil-free turbomachinery. Proc Inst Mech Eng Part J: J Eng Tribol 230(8):944–961. https://doi.org/10.1177/1350650115621015

    Article  Google Scholar 

  62. Feng K, Liu L‑J, Guo Z‑Y, Zhao X‑Y (2015) Parametric study on static and dynamic characteristics of bump-type gas foil thrust bearing for oil-free turbomachinery. Proc Inst Mech Eng Part J: J Eng Tribol 229(10):1247–1263. https://doi.org/10.1177/1350650115577026

    Article  Google Scholar 

  63. Rubio D, San Andres L (2007) Structural stiffness, dry friction coefficient, and equivalent viscous damping in a bump-type foil gas bearing. J Eng Gas Turbine Power 129(2):494–502. https://doi.org/10.1115/1.2360602

    Article  Google Scholar 

  64. Rubio D, San Andres L (2006) Bump-type foil bearing structural stiffness: experiments and predictions. J Eng Gas Turbines Power 128(3):653–660. https://doi.org/10.1115/1.2056047

    Article  Google Scholar 

  65. Peng ZC, Khonsari MM (2006) A thermohydrodynamic analysis of foil journal bearings. J Tribol 128(3):534–541. https://doi.org/10.1115/1.2197526

    Article  Google Scholar 

  66. Park DJ, Kim CH, Jang GH, Lee YB (2008) Theoretical considerations of static and dynamic characteristics of air foil thrust bearing with tilt and slip flow. Tribol Int 41(4):282–295. https://doi.org/10.1016/j.triboint.2007.08.001

    Article  Google Scholar 

  67. Le Lez S, Arghir M, Frene J (2007) Static and dynamic characterization of a bump-type foil bearing structure. J Tribol 129(1):75–83. https://doi.org/10.1115/1.2390717

    Article  Google Scholar 

  68. Le Lez S, Arghir M, Frene J (2007) A new bump-type foil bearing structure analytical model. J Eng Gas Turbines Power 129(4):1047–1057. https://doi.org/10.1115/1.2747638

    Article  Google Scholar 

  69. Kim TH, Andres LS (2008) Heavily loaded gas foil bearings: a model anchored to test data. J Eng Gas Turbines Power. https://doi.org/10.1115/1.2770494

    Article  Google Scholar 

  70. Kim D, Park S (2009) Hydrostatic air foil bearings: analytical and experimental investigation. Tribol Int 42(3):413–425. https://doi.org/10.1016/j.triboint.2008.08.001

    Article  Google Scholar 

  71. Kim D (2007) Parametric studies on static and dynamic performance of air foil bearings with different top foil geometries and bump stiffness distributions. J Tribol 129(2):354–364. https://doi.org/10.1115/1.2540065

    Article  Google Scholar 

  72. Heshmat H, Hryniewicz P, Walton JF, Willis JP, Jahanmir S, DellaCorte C (2005) Low-friction wear-resistant coatings for high-temperature foil bearings. Tribol Int 38(11–12):1059–1075. https://doi.org/10.1016/j.triboint.2005.07.036

    Article  Google Scholar 

  73. Dellacorte C, Radil KC, Bruckner RJ, Howard SA (2008) Design, fabrication, and performance of open source generation I and II compliant hydrodynamic gas foil bearings. Tribol Trans 51(3):254–264. https://doi.org/10.1080/10402000701772579

    Article  Google Scholar 

  74. Carpino M, Talmage G (2006) Prediction of rotor dynamic coefficients in gas lubricated foil journal bearings with corrugated sub-foils. Tribol Trans 49(3):400–409. https://doi.org/10.1080/10402000600781416

    Article  Google Scholar 

  75. Aurelian F, Patrick M, Mohamed H (2011) Wall slip effects in (elasto) hydrodynamic journal bearings. Tribol Int 44(7–8):868–877. https://doi.org/10.1016/j.triboint.2011.03.003

    Article  Google Scholar 

  76. Andres LS, Kim TH (2009) Analysis of gas foil bearings integrating FE top foil models. Tribol Int 42(1):111–120. https://doi.org/10.1016/j.triboint.2008.05.003

    Article  Google Scholar 

  77. Xu QS (2015) Design, fabrication, and testing of an MEMS microgripper with dual-axis force sensor. IEEE Sensors J 15(10):6017–6026. https://doi.org/10.1109/jsen.2015.2453013

    Article  Google Scholar 

  78. Xu QS (2014) Design and smooth position/force switching control of a miniature gripper for automated microhandling. IEEE Trans Ind Inform 10(2):1023–1032. https://doi.org/10.1109/tii.2013.2290895

    Article  Google Scholar 

  79. Schiffmann J, Spakovszky ZS (2013) Foil bearing design guidelines for improved stability. J Tribol. https://doi.org/10.1115/1.4007759

    Article  Google Scholar 

  80. Lee YB, Park DJ, Kim CH, Kim SJ (2008) Operating characteristics of the bump foil journal bearings with top foil bending phenomenon and correlation among bump foils. Tribol Int 41(4):221–233. https://doi.org/10.1016/j.triboint.2007.07.003

    Article  Google Scholar 

  81. Lee DH, Kim YC, Kim KW (2009) The dynamic performance analysis of foil journal bearings considering coulomb friction: rotating unbalance response. Tribol Trans 52(2):146–156. https://doi.org/10.1080/10402000802192685

    Article  Google Scholar 

  82. Kim D, Lee D (2010) Design of three-pad hybrid air foil bearing and experimental investigation on static performance at zero running speed. J Eng Gas Turbines Power. https://doi.org/10.1115/1.4001066

    Article  Google Scholar 

  83. Hong DK, Woo BC, Lee JY, Koo DH (2012) Ultra high speed motor supported by air foil bearings for air blower cooling fuel cells. IEEE Trans Magn 48(2):871–874. https://doi.org/10.1109/tmag.2011.2174209

    Article  Google Scholar 

  84. Dykas B, Bruckner R, DellaCorte C, Edmonds B, Prahl J (2009) Design, fabrication, and performance of foil gas thrust bearings for microturbomachinery applications. J Eng Gas Turbines Power. https://doi.org/10.1115/1.2966418

    Article  Google Scholar 

  85. Lee DH, Kim YC, Kim KW (2010) The effect of Coulomb friction on the static performance of foil journal bearings. Tribol Int 43(5–6):1065–1072. https://doi.org/10.1016/j.triboint.2009.12.048

    Article  Google Scholar 

  86. Iordanoff I, Said BB, Mezianne A, Berthier Y (2008) Effect of internal friction in the dynamic behavior of aerodynamic foil bearings. Tribol Int 41(5):387–395. https://doi.org/10.1016/j.triboint.2007.09.010

    Article  Google Scholar 

  87. Feng K, Guo ZY (2014) Prediction of dynamic characteristics of a bump-type foil bearing structure with consideration of dynamic friction. Tribol Trans 57(2):230–241. https://doi.org/10.1080/10402004.2013.864790

    Article  Google Scholar 

  88. Arghir M, Benchekroun O (2019) A simplified structural model of bump-type foil bearings based on contact mechanics including gaps and friction. Tribol Int 134:129–144. https://doi.org/10.1016/j.triboint.2019.01.038

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province, China under Grant 2018JJ2678 and the Natural Science Foundation of Shaanxi Province, China under Grant 2017JM5076. The authors also thank Christopher Dellacorte for his advice.

Funding

This work was supported by the Natural Science Foundation of Hunan Province, China under Grant 2018JJ2678 and the Natural Science Foundation of Shaanxi Province, China under Grant 2017JM5076.

Author information

Authors and Affiliations

Authors

Contributions

Quan Zhou had the idea for the article and drafted the work, Yi Zhang performed the literature search and data analysis, Yu Hou critically revised the work.

Corresponding author

Correspondence to Quan Zhou.

Ethics declarations

Conflict of interest

Q. Zhou, Y. Zhang and Y. Hou declare that they have no competing interests.

Ethical standards

Ethics approval: Not applicable. Consent to participate: The authors declare that the involved researchers have been listed in the article, and all authors have no objection. Consent for publication: The authors confirm that the work has not been published before and does not consider other places. Its publication has been approved by all co-authors. Authors agree to publish the article in Springer’s corresponding English-language journal.

Additional information

Availability of data and material

The authors declare that the data and material used or analyzed in the present study can be obtained from the corresponding author at reasonable request.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Zhang, Y. & Hou, Y. Research subjects and hot topics of foil bearings performance in recent twenty years: analysis and prediction. Forsch Ingenieurwes 85, 1029–1042 (2021). https://doi.org/10.1007/s10010-021-00565-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00565-9

Navigation