Skip to main content
Log in

Mode III threshold under Rolling Contact Fatigue and development of a test gearbox for planet gears

Conference Proceedings

Mode III Rißausbreitung: Entwicklung eines Testgetriebes für Planetenräder

Tagungsband

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

This paper is on the assessment for Mode III crack propagation under the influence of primarily Rolling Contact Fatigue (RCF) in integrated thin-rimmed planetary gears and its integrated bearings, and the design and development of a test gearbox for the full-scale testing of such a 3-gear train planet gears layout. It is in response to the ‘Innovative DEsign for Reliable PLANEt bearings’ (IDERPLANE) research project which will address the concern of high RCF in planetary gear bearings in the epicyclic modules of aerospace applications such as Geared turbofans (GTFs) and Main gearboxes (MGBs) in aircrafts. The project is part of the Clean Sky 2 Horizon 2020 call, and its consortium is headed by the Politecnico di Milano.

Zusammenfassung

Dieser Beitrag konzentriert sich auf die Bewertung der Mode-III-Rißausbreitung unter dem Einfluss von Kontaktermüdung (RCF) in integrierten dünnrandigen Planetenradlagern und die Konstruktion und Entwicklung eines Testgetriebes. Die Ergebnisse wurden im Rahmen des Forschungsprojekts „Innovative DEsign for Reliable PLANEt bearings’“ (IDERPLANE) gewonnen. Das Projekt konzentriert sich auf das Versagen von integrierten Planetenradlagern in den Umlaufmodulen von Luft- und Raumfahrtanwendungen wie Getriebefans (GTFs) und Hauptgetrieben (MGB) von Flugzeugen. Das Projekt ist Teil des Clean Sky 2 Horizon 2020 Calls, dessen Konsortium vom Politecnico di Milano geleitet wird.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

Cited Literature

  1. Beretta S, Foletti S, Valiullin K (2011) Fatigue strength for small shallow defects/cracks in torsion. Int J Fatigue 33(3):287–299

    Article  Google Scholar 

  2. Tarantino MG, Beretta S, Foletti S, Lai J (2011) A comparison of Mode III threshold under simple shear and RCF conditions. Eng Fract Mech 78(8):1742–1755

    Article  Google Scholar 

  3. Tarantino MG, Beretta S, Foletti S, Papadopoulos I (2013) Experiments under pure shear and rolling contact fatigue conditions: Competition between tensile and shear mode crack growth. Int J Fatigue 46:67–80

    Article  Google Scholar 

  4. Foletti S, Beretta S, Tarantino MG (2014) Multiaxial fatigue criteria versus experiments for small crack under rolling contact fatigue. Int J Fatigue 58:181–192

    Article  Google Scholar 

  5. Foletti S, Beretta S, Gurer G (2016) Defect acceptability under full-scale fretting fatigue tests for railway axles. Int J Fatigue 86:34–43

    Article  Google Scholar 

  6. Conrado E, Foletti S, Gorla C, Papadopoulos IV (2011) Use of multiaxial fatigue criteria and shakedown theorems in thermo-elastic rolling-sliding contact problems. Wear 270(5–6):344–354

    Article  Google Scholar 

  7. Van Dang K, Cailletaud G, Flavenot JF, Le Douaron A, Lieurade HP (1989) Criterion for high cycle fatigue failure under multiaxial loading. In: Brown MW, Miller KJ (eds) International Conference on Biaxial/Multiaxial Fatigue. Biaxial and multiaxial fatigue EGF, vol 3. Mechanical Engineering Publications, London, pp 459–478

    Google Scholar 

  8. Van Dang K, Griveau B, Message O (1989) On a new multiaxial fatigue limit criterion: theory and application. In: Brown MW, Miller KJ (eds) International Conference on Biaxial/Multiaxial Fatigue. Biaxial and multiaxial fatigue EGF, vol 3. Mechanical Engineering Publications, London, pp 479–496

    Google Scholar 

  9. Van Dang K (1993) Macro-micro approach in high-cycle multiaxial fatigue. In: McDowell DL, Ellis R (eds) Advances in Multiaxial Fatigue, ASTM STP 1191, Philadelphia, pp 120–130

    Google Scholar 

  10. Murakami Y (2002) Metal fatigue: effects of small defects and nonmetallic inclusions. Elsevier, Oxford

    Google Scholar 

  11. Desimone H, Bernasconi A, Beretta S (2006) On the application of Dang Van criterion to rolling contact fatigue. Wear 260.4:567–572

    Article  Google Scholar 

  12. El Haddad MH, Smith KN, Topper TH (1979) Fatigue crack propagation of short cracks. J Eng Mater Technol 101(1):42–46

    Article  Google Scholar 

Further Reading

  1. Depouhon P, Sola C, Descharrières B, Delabie A (2017) A stress based critical-plane approach for study of rolling contact fatigue crack propagation in planet gears. Airbus. http://hdl.handle.net/20.500.11881/3831

  2. Niemann G, Winter H, Höhn B‑R (2006) Manuale degli organidelle macchine (Tecniche Nuove)

    Google Scholar 

  3. Harris TA (2001) Rolling bearing analysis. John Wiley & Sons Inc., Hoboken

    Google Scholar 

  4. Langstreth Johnson K (1985) Contact mechanics. University Press, Cambridge

    Book  Google Scholar 

  5. ISO 6336-series:2019. Calculation of load capacity of spur and helical gears—Multiple parts. Standard. Geneva, CH: International Organization for Standardization, Nov. 2019.

  6. ISO/TS 16281:2008. Rolling bearings—Methods for calculating the modified reference rating life for universally loaded bearings. Standard. Geneva, CH: International Organization for Standardization, June 2008.

  7. ISO281:2007. Rolling bearings—Dynamic load ratings and rating life. Standard. Geneva, CH: International Organization for Standardization, Feb. 2007.

Download references

Acknowledgements

This project has received funding from the Clean Sky 2 Joint Undertaking under the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 821315.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasad Mahendra Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.M., Foletti, S., Bonaiti, L. et al. Mode III threshold under Rolling Contact Fatigue and development of a test gearbox for planet gears. Forsch Ingenieurwes 86, 483–490 (2022). https://doi.org/10.1007/s10010-021-00562-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00562-y

Navigation