Skip to main content
Log in

Plastic gear remaining useful life prediction using artificial neural network

Vorhersage der Restnutzungsdauer von Kunststoffzahnrädern mit künstlichem neuronalem Netz

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Prognostic and health management (PHM) of plastic gears has attracted attention due to an increasing performance of plastic gears, uncovering potential applications in the industry, especially in vehicle transmissions. Meanwhile, health indicator (HI) construction and remaining useful life (RUL) estimation are two key elements to efficiently perform PHM. In this paper, a health indicator generator (HIG) based on an artificial neural network (ANN) is constructed. The HIG is learned from training data extracted from plastic gears’ raw vibration data using the Fourier decomposition method (FDM) in a sensitive frequency band (SFB) and labeled using a change-point detection algorithm (CDA). Three prediction strategies, including linear regression (LR), estimation of parameters for Weibull distribution (EWD), HI combined average RUL (HI-ARUL), are deployed using HI generated from HIG to predict the RUL of the plastic gear. The results show that the generated HI is sensitive to the early failure of plastic gears and is capable of applying an efficient and precise diagnosis method, which can be performed during the whole working time of plastic gear with prediction errors smaller than 7%.

Zusammenfassung

Das Prognose- und Gesundheitsmanagement (PHM) von Kunststoffzahnrädern hat durch die zunehmende Leistungsfähigkeit von Kunststoffzahnrädern und deren Einsatzmöglichkeiten in der Industrie, insbesondere in Fahrzeuggetrieben, Aufmerksamkeit erregt. In der Zwischenzeit sind die Konstruktion des Zustandsindikators (HI) und die Schätzung der Restnutzungsdauer (RUL) zwei Schlüsselelemente für eine effiziente Durchführung von PHM. In diesem Artikel wird ein Gesundheitsindikatorgenerator (HIG) basierend auf einem künstlichen neuronalen Netz (ANN) konstruiert. Das HIG wird aus Trainingsdaten gelernt, die aus den Rohschwingungsdaten von Kunststoffzahnrädern mit der Fourier-Zerlegungsmethode (FDM) in einem empfindlichen Frequenzband (SFB) extrahiert und mit einem Änderungspunkt-Erkennungsalgorithmus (CDA) gekennzeichnet werden. Drei Vorhersagestrategien, einschließlich lineare Regression (LR), Schätzung von Parametern der Weibull-Verteilung (EWD), HI kombinierter Durchschnitt RUL (HI-ARUL), werden unter Verwendung von HI, das aus HIG generiert wird, eingesetzt, um die RUL des Kunststoffzahnrads vorherzusagen. Die Ergebnisse zeigen, dass der erzeugte HI empfindlich auf den frühen Ausfall von Kunststoffzahnrädern reagiert. Daher ist es möglich, ein effizientes und präzises Diagnoseverfahren anzuwenden, das während der gesamten Arbeitszeit von Kunststoffzahnrädern mit Vorhersagefehlern von weniger als 7% durchgeführt werden kann.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Mobley RK (2001) Gears and gears drives. In: Plant engineer’s Handbook. Butterworth-Heinemann, Boston

    Google Scholar 

  2. Litvin FL (2016) Theory and practice of gearing and transmission. Mechanisms and machine science, vol 34. Marco Ceccarelli, Cassino

    Google Scholar 

  3. Mao K (2007) Gear tooth contact analysis and its application in the reduction of fatigue wear. Wear 262:1281–1288

    Google Scholar 

  4. Basan R, Franulovic M, Previl I, Crnjaric-Zic N (2011) Analysis of strain-life fatigue parameters and behavior of different group of metallic materials. Int J Fatigue 33:484–491

    Google Scholar 

  5. Patil SS, Karuppanan S, Atanasovska I, Wahab AA (2014) Contact stress analysis of helical gear pairs, including frictional coefficients. Int J Mech Sci 85:205–211

    Google Scholar 

  6. Davis JR (2005) Gear materials, properties, and manufacture. ASM International, Materials Park

    Google Scholar 

  7. Elmquist JL (2014) Deciding when to go plastic. Gear Technology July 2014:46–47

    Google Scholar 

  8. Bravo A, Koffi D, Toubal L, Erchiqui F (2015) Life and damage mode modeling applied to plastic gears. Eng Fail Anal 58:113–133

    Google Scholar 

  9. Yelle H, Koffi D, Guilbault R (1999) Comportement à I’usure et à I’échauffement des engrenages en plastique en function des matériaux de la paire. In: World congress on gearing and power transmission, pp 713–722

    Google Scholar 

  10. Walton D, Shi YW (1989) A comparison of ratings for plastic gears. Proc Inst Mech Eng Part C Mech Eng Sci 203(1):31–38

    Google Scholar 

  11. Jain M, Patil S, Ghosh SS (2019) A review on failure characteristics of polymeric gears. In: AIP Conference Proceeding, vol 2148

    Google Scholar 

  12. Heng A, Zhang S, Tan ACC, Mathew J (2009) Rotating machinery prognostics: state of the art, challenges and opportunities. Mech Syst Signal Process 23(3):724–739

    Google Scholar 

  13. Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D (2014) Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech Syst Signal Process 42(1/2):314–334

    Google Scholar 

  14. Benkedjouh T, Medjaher K, Zerhouni N, Rechak S (2013) Remaining useful life estimation based on nonlinear feature reduction and support vector regression. Eng Appl Artif Intell 26:1751–1760

    Google Scholar 

  15. Bogue R (2013) Sensors for condition monitoring: a review of technologies and applications. Sens Rev 33(4):295–299

    Google Scholar 

  16. Xiang S, Qin Y, Zhu C, Wang Y, Chen H (2020) Long short-term memory neural network with weight amplification and its application into gear remaining useful life prediction. Eng Appl Artif Intell 91:103587

    Google Scholar 

  17. Mahamad AK, Saon S, Hiyama T (2010) Predicting remaining useful life of rotating machinery based artificial neural network. Comput Math Appl 60:1078–1087

    MATH  Google Scholar 

  18. Ali JB, Morello BC, Saidi L, Malinowski S, Fnaiech F (2015) Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network. Mech Syst Signal Process 56/57:150–172

    Google Scholar 

  19. Zhang Z, Wang Y, Wang K (2013) Fault diagnosis and prognosis using wavelet packet decomposition, Fourier transform and artificial neural network. J Intell Manuf 24:1213–1227

    Google Scholar 

  20. Wu B, Li W, Qiu M (2017) Remaining useful life prediction of bearing with vibration signals based on a novel indicator. Shock Vib. https://doi.org/10.1155/2017/8927937

    Article  Google Scholar 

  21. Ji S, Han X, Hou Y, Song Y, Du Q (2020) Remaining useful life prediction of airplane engine based on PCA-BLSTM. Sensor 20(16):4537

    Google Scholar 

  22. Zhang J, Wang P, Yan R, Gao RX (2018) Long short-term memory for machine remaining life prediction. J Manuf Syst 48(C):78–86

    Google Scholar 

  23. Wang D, Tsui KL, Miao Q (2018) Prognostics and health management: a review of vibration based bearing and gear health indicators. IEEE Access 6:665–676

    Google Scholar 

  24. Bechhoefer E, Morton B (2012) Condition monitoring architecture: to reduce total cost of ownership. In: IEEE Conf. on Prognostics and Health Management, pp 1–9

    Google Scholar 

  25. Zheng R (2015) Parameter estimation of three-parameter Weibull distribution and its application in reliability analysis. J Vib Shock 34(5):78–81

    Google Scholar 

  26. Li X, Cai J, Zuo H, Chen X, Mao H, Xu Y (2017) Reliability sequential compliance method for a partially observable gear system subject to vibration monitoring. J Vibroeng 19(5):3313–3334

    Google Scholar 

  27. Zhao R, Yan R, Chen Z, Mao K, Wang P, Gao RX (2019) Deep learning and its applications to machine health monitoring. Mech Syst Signal Process 115:213–237

    Google Scholar 

  28. Tian Z (2009) An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. J Intell Manuf 23(2):143–148

    Google Scholar 

  29. Guo L, Li N, Jia F, Lei Y, Lin J (2017) A recurrent neural network based health indicator for remaining useful life prediction of bearings. Neurocomputing 240:98–109

    Google Scholar 

  30. Nistane VM (2020) Comparative performance of prognostics for remaining useful life of bearing. Noise Vib Worldw 51(11):208–222

    Google Scholar 

  31. Dong S, Luo T (2013) Bearing degradation process prediction based on the PCA and optimized LS-SVM model. Measurement 46(9):3143–3152

    Google Scholar 

  32. Iba D, Ohmori S, Hongu J, Nakamura M, Moriwaki I (2013) Failure detection of plastic gears based on comparison of Fourier coefficients of a gear mesh vibration model by rectangle pulse train and frequency analysis of acceleration response. Trans Japan Soc Mech Eng 79:5138–5148 (in Japanese)

    Google Scholar 

  33. Desobry F, Davy M, Doncarli C (2005) An online kernel change detection algorithm. IEEE Trans Signal Process 53(8):2961–2974

    MathSciNet  MATH  Google Scholar 

  34. Yang ZR, Yang Z (2014) 6.01—Artificial neural networks. Compr Biomed Phys 6:1–17

    Google Scholar 

  35. Babu GS, Zhao P, Li XL (2016) Deep convolutional neural network based regression approach for estimation of remaining useful life. Lecture notes in computer science, vol 9642

    Google Scholar 

  36. Tao P, Haiyan J, Yong X (2011) Weibull distribution parameters for fault feature extraction of rolling bearing. In: Chinese Control and Decision Conference (CCDC), pp 69–74

    Google Scholar 

  37. Nwobi F, Ugomma CA (2014) A comparison of methods for the estimation of Weibull distribution parameters. Metodoloski Zv 11(1):65

    Google Scholar 

  38. Ishii Y, Iba D, Miyamoto S, Miura N, Iizuka T, Masuda A, Sone A, Moriwaki I (2018) Automatic acquisition system of meshing vibration data and image pictures of crack propagation. In: Proceedings of the machine design and tribology division meeting in JSME (in Japanese)

    Google Scholar 

  39. Sawali N (2016) Vibration sideband modulations and harmonics separation of a planetary helicopter gearbox with two different configurations. Adv Acoust Vib. https://doi.org/10.1155/2016/9820768

    Article  Google Scholar 

  40. Chaari F, Baccar W, Abbes MS, Haddar M (2008) Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a on-stage spur gear transmission. Eur J Mech A Solids 27:691–705

    MATH  Google Scholar 

  41. Kien BH, Iba D, Ishii Y, Tsutsui Y, Miura N, Iizuka T, Masuda A, Sone A, Moriwaki I (2019) Crack detection of plastic gears using a convolutional neural network pre-learn from images of meshing vibration data with transfer learning. Forsch Geb Ingenieurwes 83(3):645–653

    Google Scholar 

  42. Ghazali WM, Idris DMND, Sofian AH, Siregar JP, Aziz IAA (2017) A review on failure characteristics of polymer gear. MATEC Web Conf 90(01029):1–10

    Google Scholar 

  43. Vogl TP, Mangis JK, Rigler AK, Zink WT, Alkon DL (1988) Accelerating the convergence of the back-propagation method. Biol Cybern 59:257–263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. H. Kien.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kien, B.H., Iba, D., Tsutsui, Y. et al. Plastic gear remaining useful life prediction using artificial neural network. Forsch Ingenieurwes 86, 569–585 (2022). https://doi.org/10.1007/s10010-021-00557-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00557-9

Navigation