Skip to main content
Log in

Influence of thin–rimmed/-webbed gears on transmission dynamic behaviour—Approximate dynamic factor formula

Einfluss von dünnstegigen/-berandeten Zahnrädern auf das dynamische Verhalten des Getriebes – Näherungsweise Formel für den Dynamikfaktor

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

The objective of this paper is to analyse the effect of thin-webbed/-rimmed and consequently flexible gear bodies on dynamic tooth loads. To this end, an approximate dynamic factor formula is used, which makes it possible to estimate dynamic mesh force amplifications from Finite Element models, strain energies and quasi-static transmission errors. It is shown that, whenever solid gears are considered, the dynamic factor derived from the complete FE model results agrees well with those given by the analytical formula. When thin-rimmed/webbed gears are considered, the outcomes from the approximate dynamic factor formula are still in reasonable agreement with those of the complete FE model although the influence of rotating gear body cannot be accounted for. This good agreement also reveals that, for the tested geometries, dynamic couplings between dynamic mesh forces and gear body elasticity remain moderate.

Zusammenfassung

Ziel dieser Arbeit ist es, den Einfluss von dünnstegigen/-berandeten und damit flexiblen Zahnradkörpern auf dynamische Zahnbelastungen zu analysieren. Dazu wird eine näherungsweise dynamische Faktorformel verwendet, die es ermöglicht, dynamische Zahnkraftungen aus Finite-Elemente-Modellen, Dehnungsenergien und quasistatischen Übertragungsfehlern abzuschätzen. Es wird gezeigt, dass bei der Betrachtung von Vollzahnrädern der aus den vollständigen FE-Modellergebnissen abgeleitete dynamische Faktor gut mit dem durch die analytische Formel angegebenen übereinstimmt. Bei der Betrachtung von dünnrandigen/stegigen Zahnrädern stimmen die Ergebnisse der angenäherten dynamischen Faktorformel noch einigermaßen mit denen des vollständigen FE-Modells überein, obwohl der Einfluss des rotierenden Zahnradkörpers nicht berücksichtigt werden kann. Diese gute Übereinstimmung zeigt auch, dass für die getesteten Geometrien die dynamischen Kopplungen zwischen dynamischen Eingriffskräften und Radkörperelastizität moderat bleiben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Özgüven HN, Houser DR (1988) Mathematical models used in gear dynamics—A review. J Sound Vib 121(3):383–411

    Article  Google Scholar 

  2. Kahraman A, Singh R (1990) Non-linear dynamics of a spur gear pair. J Sound Vib 142(1):49–75

    Article  Google Scholar 

  3. Velex P, Maatar M (1996) A mathematical model for analysing the influence of shape deviation and mounting errors on gear behaviour. J Sound Vib 191:629–660

    Article  Google Scholar 

  4. Vedmar L, Andersson A (2003) A method to determine dynamic loads on spur gear teeth and on bearings. J Sound Vib 267:1065–1084

    Article  Google Scholar 

  5. Kubur M, Kahraman A, Zini DM, Kienzle K (2004) Dynamic analysis of a multi-shaft helical gear transmission by finite elements: model and experiment. ASME J Vib Acoust 126:398–406

    Article  Google Scholar 

  6. Li S (2002) Deformation and bending stress analysis of a three-dimensional, thin-rimmed gear. J Mech Des 124:129–135

    Article  Google Scholar 

  7. Li S (2013) Effects of centrifugal load on tooth contact stresses and bending stresses of thin-rimmed spurs gears and with inclined webs. Mech Mach Theory 59:34–47

    Article  Google Scholar 

  8. Li S (2015) Effects of misalignment error, tooth modifications and transmitted torque on tooth engagements of a pair of spur gears. Mech Mach Theory 83:25–136

    Article  Google Scholar 

  9. Parker RG, Sathe PJ (1999) Free vibration and stability of a spinning disk-spindle system. J Vib Acoust 121:391–396

    Article  Google Scholar 

  10. Parker RG, Vijayakar SM, Imajo T (2000) Non-linear dynamic response of a spur gear pair: modelling and experimental comparisons. J Sound Vib 237:435–455

    Article  Google Scholar 

  11. Abousleiman V, Velex P, Becquerellle S (2007) Modelling of spur and helical gear planetary drives with flexible gears and planet carriers. J Mech Des 129(1):95–106. https://doi.org/10.1115/1.2359468

    Article  Google Scholar 

  12. Wu X, Parker RG (2008) Modal properties of planetary gear with an elastic continuum ring gear. ASME J Appl Mech 75:031014-1-12.

    Google Scholar 

  13. Bettaieb M, Velex P, Ajmi M (2007) A static and dynamic model of geared transmission by combining substructures and elastic foundations—Application on thin-rimmed gears. J Mech Des 129:184–194. https://doi.org/10.1115/1.2406088

    Article  Google Scholar 

  14. Liu C, Zhao Y, Wang Y, Zhang T, Jia H (2021) Hybrid dynamic modelling and analysis of high-speed thin-rimmed gears. ASME J Mech Des 143:123401-1-13

    Google Scholar 

  15. Velex P, Ajmi M (2006) On the modelling of excitations in geared systems by transmission errors. J Sound Vib 290:882–909

    Article  Google Scholar 

  16. Velex P, Ajmi M (2007) Dynamic tooth loads and quasi-static transmission errors in helical gears—Approximate dynamic factor formulae. Mech Mach Theory 42:1512–1526

    Article  Google Scholar 

  17. Guilbert B, Velex P, Dureisseix D, Cutuli P (2016) A mortar based mesh interface for hybrid finite element/lumped parameter gear dynamic models—Application to thin-rimmed geared systems. J Mech Des 138:1233301-1-11

    Article  Google Scholar 

  18. Guilbert B, Velex P, Dureisseix D, Cutuli P (2019) Modular hybrid model to simulate the static and dynamic behaviour of high-speed thin-rimmed gears. J Sound Vib 438:353–380

    Article  Google Scholar 

  19. Weber C, Banaschek K (1953) Formänderung und Profilrücknahme bei Gerad-und Schrägverzahnten Antriebstechnik [Change in shape and profile modifications in spur and helical gears]. Vieweg, Braunschweig, p 11

    Google Scholar 

  20. Herting DN (1985) A general purpose, multi-stage component modal synthesis method. Finite Elem Anal Des 1:153–164

    Article  Google Scholar 

  21. NF ISO 6336‑1 (2006) Calculation of load capacity of spur and helical gears—Part 1: Basic principles, introduction and general influence factors

    Google Scholar 

  22. Guilbert B, Cutuli P, Velex P (2019) Hybrid models for the study if gear body dynamic deflections—Modes of the gear body. In: VDI International Conference on Gears, Garching, Germany, Sept. 18–20th, 2019

    Google Scholar 

  23. Velex P, Bruyère J, Houser DR (2011) Some analytical results on transmission errors in narrow-faced spur and helical gears – influence of profile modifications. J Mech Des 133:031010-1-11

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Guilbert.

Ethics declarations

Conflict of interest

B. Guilbert and P. Velex declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guilbert, B., Velex, P. Influence of thin–rimmed/-webbed gears on transmission dynamic behaviour—Approximate dynamic factor formula. Forsch Ingenieurwes 86, 315–320 (2022). https://doi.org/10.1007/s10010-021-00543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00543-1

Navigation