Skip to main content
Log in

Dynamic load distribution of planetary gear sets subject to both internal and external excitations

Dynamische Lastverteilung von Planetengetriebe, die sowohl internen als auch externen Anregungen unterliegen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Planetary gearsets are widely used in several mechanical systems and have numerous advantages over counter-shaft gears. Despite this, the complex arrangement of components in a planetary gear system makes them susceptible to noise and vibration issues. An exhaustive and rich literature is available on the topic of planetary gear dynamics, but most of these studies consider only the parametric excitation of gear mesh contacts while assuming an ideal power source. But contrary to this popular assumption, realistic power sources (IC Engine, electric motor, wind turbine, etc.) could be subjected to torque fluctuations based on the operating conditions. The current study presents a theoretical investigation on the load distribution and dynamic behavior of planetary gear sets subjected to both internal and external excitations. A three-dimensional dynamic planetary load distribution model that inherently captures the internal excitation due to the elastic gear mesh contacts is employed in this study. The influence of operating conditions on both system-level response and local gear mesh contact stress distribution are explored. Discussed results not only illustrate the potential of the dynamic model but also reinforce the need for such computationally efficient models for design and analysis purposes.

Zusammenfassung

Planetengetriebe sind in mehreren mechanischen Systemen weit verbreitet und haben zahlreiche Vorteile gegenüber Gegenwellengetrieben. Trotzdem macht die komplexe Anordnung von Komponenten in einem Planetengetriebe sie anfällig für Lärm- und Vibrationsprobleme. Eine erschöpfende und reichhaltige Literatur ist zum Thema der planetendynamischen Gangdynamik verfügbar, aber die meisten dieser Studien betrachten nur die parametrische Anregung von Zahnradnetzkontakten, während sie eine ideale Kraftquelle annehmen. Entgegen dieser gängigen Annahme könnten jedoch realistische Energiequellen (IC-Motor, Elektromotor, Windkraftanlage usw.) Drehmomentschwankungen auf der Grundlage der Betriebsbedingungen ausgesetzt werden. Die aktuelle Studie präsentiert eine theoretische Untersuchung über die Lastverteilung und das dynamische Verhalten von Planetengetriebesätzen, die sowohl internen als auch externen Anregungen ausgesetzt sind. In dieser Studie wird ein dreidimensionales dynamisches Planetenlastverteilungsmodell verwendet, das die interne Anregung durch die elastischen Zahnnetzkontakte inhärent erfasst. Der Einfluss der Betriebsbedingungen auf die Reaktion auf Systemebene und die Verteilung der Kontaktspannungsverteilung im lokalen Zahnnetznetz wird untersucht. Die diskutierten Ergebnisse veranschaulichen nicht nur das Potenzial des dynamischen Modells, sondern verstärken auch die Notwendigkeit solcher recheneffizienten Modelle für Entwurfs- und Analysezwecke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bodas A, Kahraman A (2004) Influence of carrier and gear manufacturing errors on the static load sharing behavior of planetary gear sets. JSME Int J C Mech Syst Mach Elem Manuf 47(3):908–915

    Google Scholar 

  2. Singh A (2005) Application of a system level model to study the planetary load sharing behavior. J Mech Des 127(3):469–476

    Article  Google Scholar 

  3. Kahraman A (1994) Load sharing characteristics of planetary transmissions. Mech Mach Theory 29(8):1151–1165

    Article  Google Scholar 

  4. Cooley CG, Parker RG (2014) A review of planetary and epicyclic gear dynamics and vibrations research. Appl Mech Rev 66(4):40804

    Article  Google Scholar 

  5. Nigam A, Sandeep J (2015) Modelling and structural analysis of planetary geared winch. Int J Sci Res 4(1):330–333

    Google Scholar 

  6. Stoyanov S, Dobrev V, Dobreva A (2017) Finite elements contact modelling of planetary gear trains. IOP Conf Ser Mater Sci Eng 252:12034

    Article  Google Scholar 

  7. Zeng Q, Jiang S, Wan L, Li X (2015) Finite element modeling and analysis of planetary gear transmission based on transient meshing properties. Int J Model Simul Sci Comput 6(03):1550035

    Article  Google Scholar 

  8. Kahraman A, Vijayakar S (2001) Effect of internal gear flexibility on the quasi-static behavior of a planetary gear set. J Mech Des Trans ASME 123(3):408–415

    Article  Google Scholar 

  9. Abousleiman V, Velex P (2006) A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets. Mech Mach Theory 41(6):725–748

    Article  Google Scholar 

  10. Abousleiman V, Velex P, Becquerelle S (2007) Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers. J Mech Des 129(1):95–106

    Article  Google Scholar 

  11. Do TP, Ziegler P, Eberhard P (2013) Simulation of elastic gears with non-standard flank profiles. Arch Mech Eng 60(1):55–73

    Article  Google Scholar 

  12. Inalpolat M, Kahraman A (2008) Dynamic modelling of planetary gears of automatic transmissions. Proc Inst Mech Eng Part K J Multi-body Dyn 222(3):229–242

    Google Scholar 

  13. Velex P, Ajmi M (2006) On the modelling of excitations in geared systems by transmission errors. J Sound Vib 290(3):882–909

    Article  Google Scholar 

  14. Kahraman A (1994) Planetary gear train dynamics. J Mech Des 116(3):713–720

    Article  Google Scholar 

  15. Velex P, Flamand L (1996) Dynamic response of planetary trains to mesh parametric excitations. J Mech Des Trans ASME 118(1):7–14

    Article  Google Scholar 

  16. Lin J, Parker RG (2002) Planetart gear parametric instability caused by mesh stiffness variation. J Sound Vib 249(1):129–145

    Article  Google Scholar 

  17. Ambarisha VK, Parker RG (2005) Suppression of planet mode response in planetary gear dynamics through mesh phasing. J Vib Acoust 128(2):133–142

    Article  Google Scholar 

  18. Ambarisha VK, Parker RG (2007) Nonlinear dynamics of planetary gears using analytical and finite element models. J Sound Vib 302(3):577–595

    Article  Google Scholar 

  19. Al-Shyyab A, Kahraman A (2007) A non-linear dynamic model for planetary gear sets. Proc Inst Mech Eng Part K J Multi-body Dyn 221(4):567–576

    Google Scholar 

  20. Inalpolat M, Kahraman A (2010) A dynamic model to predict modulation sidebands of a planetary gear set having manufacturing errors. J Sound Vib 329(4):371–393

    Article  Google Scholar 

  21. Ryali L, Talbot D (2021) A dynamic load distribution model of planetary gear sets. Mech Mach Theory 158:104229

    Article  Google Scholar 

  22. Hu Y, Talbot D, Kahraman A (2018) A load distribution model for planetary gear sets. J Mech Des 140(5):53302

    Article  Google Scholar 

  23. Li Y, Chen T, Wang X (2014) Non-linear dynamics of gear pair with dynamic backlash subjected to combined internal and external periodic excitations. J Vib Control 22(6):1693–1703

    Article  MathSciNet  Google Scholar 

  24. Fang Y, Zuo MJ, Li Y (2019) Investigation of gear dynamic characteristics under stochastic external excitations. IOP Conf Ser Mater Sci Eng 576:12013

    Article  Google Scholar 

  25. Bai W, Qin D, Wang Y, Lim TC (2018) Dynamic characteristics of motor-gear system under load saltations and voltage transients. Mech Syst Signal Process 100:1–16

    Article  Google Scholar 

  26. Zhao M, Ji J (2016) Dynamic analysis of wind turbine gearbox components. Energies 9(2):110

    Article  Google Scholar 

  27. Zhao M, Ji JC (2015) Nonlinear torsional vibrations of a wind turbine gearbox. Appl Math Model 39(16):4928–4950

    Article  MathSciNet  Google Scholar 

  28. Li C, Zhou Y, Lim TC, Sun G (2016) Dynamic responses of a wind turbine drivetrain under turbulent wind and voltage disturbance conditions. Adv Mech Eng 8(5):1687814016649936

    Google Scholar 

  29. Bati A, Luk PCK (2015) Analysis of drive-train resonance and torque ripple smoothing of a 50 kW vertical axis wind turbine. In: 2015 IEEE International Conference on Industrial Technology (ICIT), pp 1263–1268

    Chapter  Google Scholar 

  30. Guo Y, Keller J, Parker RG (2012) Dynamic analysis of wind turbine planetary gears using an extended harmonic balance approach: preprint. https://www.nrel.gov/docs/fy12osti/55355.pdf

    Google Scholar 

  31. Ligata H, Kahraman A, Singh A (2009) A closed-form planet load sharing formulation for planetary gear sets using a translational analogy. J Mech Des 131(2):21007

    Article  Google Scholar 

  32. Ryali L, Verma A, Hong I, Talbot D, Zhu F (2021) Experimental and theoretical investigation of quasi-static system level behavior of planetary gear sets. J Mech Des. https://doi.org/10.1115/1.4050302

    Article  Google Scholar 

  33. Chen Q, Xu G, Liu G, Zhao W, Liu L, Lin Z (2018) Torque ripple reduction in five-phase IPM motors by lowering interactional MMF. IEEE Trans Ind Electron 65(11):8520–8531

    Article  Google Scholar 

  34. Hwang M‑H, Lee H‑S, Cha H‑R (2018) Analysis of torque ripple and cogging torque reduction in electric vehicle traction platform applying rotor notched design. Energies 11(11):3053

    Article  Google Scholar 

  35. Wang K, Zhu ZQ, Ombach G, Koch M, Zhang S, Xu J (2015) Torque ripple reduction of synchronous reluctance machines: using asymmetric flux-barrier. COMPEL 34(1):18–31

    Article  Google Scholar 

  36. Hu Y, Ryali L, Talbot D, Kahraman A (2019) A theoretical study of the overall transmission error in planetary gear sets. Proc Inst Mech Eng Part C J Mech Eng Sci 233(21/22):7200–7211

    Article  Google Scholar 

  37. Vijayakar SM, Houser DR (1988) Use of boundary elements for the determination of the AGMA geometry factor. Gear Technol 5(1):7–9, 33

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokaditya Ryali.

Ethics declarations

Conflict of interest

L. Ryali and D. Talbot declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryali, L., Talbot, D. Dynamic load distribution of planetary gear sets subject to both internal and external excitations. Forsch Ingenieurwes 86, 283–294 (2022). https://doi.org/10.1007/s10010-021-00506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00506-6

Navigation