Abstract
Roller element bearings present in the intermediate and high-speed stages of wind turbine gearboxes operate in dynamic working conditions and in some cases may fail within 30% or less of their designed lifetime. Upon investigation, it has been identified that these premature failures happen due to a peculiar failure mode associated with formation of white etching cracks (WEC). This continues to be a great challenge for the wind energy operators as it leads to an increase of maintenance and operation costs in addition to long wind turbine downtime. Therefore, the industry is in dire need of a lifetime prediction methodology that could take in multi-scale inputs ranging from bearing loads at the system level down to the level of bearing material properties at the microscopic level. This work summarizes the overall approach of a project that aims towards an integrated framework which links load data from the bearings and microstructure related non-metallic inclusion statistics from bearing steels, to predict a material based probability of failure. The interlink between both aspects is a numerical rolling contact fatigue (RCF) framework based on finite element analysis, which includes multi-scale data as an input to calculate rolling contact fatigue damage. The outcome will help the wind industry to better predict bearing failures.
Zusammenfassung
Rollenelementlager, die in den Zwischen- und Hochgeschwindigkeitsstufen von Windturbinengetrieben vorhanden sind, arbeiten unter dynamischen Arbeitsbedingungen und können in einigen Fällen innerhalb von 30% oder weniger ihrer vorgesehenen Lebensdauer ausfallen. Bei der Untersuchung wurde festgestellt, dass diese vorzeitigen Fehler aufgrund eines besonderen Fehlermodus auftreten, der mit der Bildung von weißen Ätzrissen (WEC) verbunden ist. Dies ist weiterhin eine große Herausforderung für die Windenergiebetreiber, da es neben langen Ausfallzeiten von Windkraftanlagen zu einer Erhöhung der Wartungs- und Betriebskosten führt. Daher benötigt die Industrie dringend eine Methode zur Vorhersage der Lebensdauer, die mehrskalige Eingaben berücksichtigen kann, die von Lagerbelastungen auf Systemebene bis hin zu Lagermaterialeigenschaften auf mikroskopischer Ebene reichen. Diese Arbeit fasst den Gesamtansatz eines Projekts zusammen, das auf ein integriertes Framework abzielt, das Lastdaten aus den Lagern und mikrostrukturbezogene nichtmetallische Einschlussstatistiken von Lagerstählen verknüpft, um eine materialbasierte Ausfallwahrscheinlichkeit vorherzusagen. Die Verbindung zwischen beiden Aspekten ist ein numerisches RCF-Framework (Rolling Contact Fatigue), das auf einer Finite-Elemente-Analyse basiert und mehrskalige Daten als Eingabe zur Berechnung des Ermüdungsschadens durch Rollkontakt enthält. Das Ergebnis wird der Windindustrie helfen, Lagerausfälle besser vorherzusagen.
This is a preview of subscription content, access via your institution.










References
Vaes D, Guo Y, Tesini P, Keller JA (2019) Investigation of roller sliding in wind turbine gearbox high-speed-shaft bearings https://doi.org/10.2172/1524765
White etching cracks. http://evolution.skf.com/white-etching-cracks-a-consequence-not-a-root-cause-of-bearing-failure/. Accessed 1 July 2019
Igba J, Alemzadeh K, Durugbo C, Henningsen K (2015) Performance assessment of wind turbine gearboxes using in-service data: current approaches and future trends. Renew Sustain Energy Rev 50:144–159. https://doi.org/10.1016/j.rser.2015.04.139
Keller JA, Gould B, Greco A (2017) Investigation of bearing axial cracking: Benchtop and full-scale test results https://doi.org/10.2172/1375844
Evans M‑H (2013) White structure flaking failure in bearings under rolling contact fatigue. https://eprints.soton.ac.uk/355966/. Accessed: 20 Dec 2018
Vegter RH, Stadler K (2020) Review on crack initiation and premature failures in bearing applications. In: Beswick JM (ed) Bearing steel technologies: 12th volume, progress in bearing steel metallurgical testing and quality assurance ASTM International, West Conshohocken, pp 1–25 https://doi.org/10.1520/STP162320190054
Bruce T, Rounding E, Long H, Dwyer-Joyce RS (2015) Characterisation of white etching crack damage in wind turbine gearbox bearings. Wear 338–339:164–177. https://doi.org/10.1016/j.wear.2015.06.008
Grabulov A (2010) Fundamentals of rolling contact fatigue
Al-Tameemi HA, Long H, Dwyer-Joyce RS (2019) Damage characterisation of white etching cracks in a black oxide coated wind turbine gearbox bearing. Wear. https://doi.org/10.1016/j.wear.2019.05.038
Cerullo M (2014) Sub-surface fatigue crack growth at alumina inclusions in AISI 52100 roller bearings. Procedia Eng 74:333–338. https://doi.org/10.1016/j.proeng.2014.06.274
Morsdorf L, Mayweg D, Li Y, Diederichs A, Raabe D, Herbig M (2020) Moving cracks form white etching areas during rolling contact fatigue in bearings. Mater Sci Eng A 771:138659. https://doi.org/10.1016/j.msea.2019.138659
Tian C, Liu J, Lu H, Dong H (2017) Estimation of maximum inclusion by statistics of extreme values method in bearing steel. J Iron Steel Res 24:1131–1136. https://doi.org/10.1016/S1006-706X(17)30164-4
Atkinson HV, Shi G (2003) Characterization of inclusions in clean steels: a review including the statistics of extremes methods. Prog Mater Sci 48:457–520. https://doi.org/10.1016/S0079-6425(02)00014-2
Bruce T, Long H, Dwyer-Joyce RS (2015) Dynamic modelling of wind turbine gearbox bearing loading during transient events. IET Renew Power Gener 9:821–830. https://doi.org/10.1049/iet-rpg.2014.0194
Verstraeten T, Nowe A, Keller J, Guo Y, Sheng S, Helsen J (2019) Fleetwide data-enabled reliability improvement of wind turbines. arXiv:1903.11518
Evans M‑H, Richardson AD, Wang L, Wood RJK (2013) Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear 306:226–241. https://doi.org/10.1016/j.wear.2013.03.008
Manieri F, Stadler K, Morales-Espejel GE, Kadiric A (2019) The origins of white etching cracks and their significance to rolling bearing failures. Int J Fatigue 120:107–133. https://doi.org/10.1016/j.ijfatigue.2018.10.023
A01 (2020) Committee Specification for high-carbon anti-friction bearing steel. ASTM International. https://doi.org/10.1520/A0295_A0295M-14R20
Halfpenny A, Chabod A, Czapski P, Aldred J, Munson K, Bonato M (2019) Probabilistic fatigue and reliability simulation. Procedia Struct Integr 19:150–167. https://doi.org/10.1016/j.prostr.2019.12.018
Ravi G, De Waele W, Hertelé S (2021) Numerical methodology to predict subsurface crack initiation from non-metallic inclusions due to rolling contact fatigue. In: Abdel Wahab M (ed) Proceedings of the 8th international conference on fracture, fatigue and wear. Springer Singapore, Singapore, pp 455–471
Zeng D, Xu T, Liu W, Lu L, Zhang J, Gong Y (2020) Investigation on rolling contact fatigue of railway wheel steel with surface defect. Wear 203207:446–447. https://doi.org/10.1016/j.wear.2020.203207
Fatemi A, Socie DF (1988) A critical plane approach to multiaxial fatigue damage including out-of-phase loading. Fatigue Fract Eng Mater Struct 11:149–165. https://doi.org/10.1111/j.1460-2695.1988.tb01169.x
Sauvage P (2018) On an extension of the Fatemi and socie equation for rolling contact in rolling bearings. In: Proceedings of the 7th International Conference on Fracture Fatigue and Wear, pp 438–457
Evans M‑H (2016) An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater Sci Technol 32:1133–1169. https://doi.org/10.1080/02670836.2015.1133022
Guo Y, Keller J (2020) Validation of combined analytical methods to predict slip in cylindrical roller bearings. Tribol Int. https://doi.org/10.1016/j.triboint.2020.106347
Guo Y, Sheng S, Phillips C, Keller J, Veers P, Williams L (2020) A methodology for reliability assessment and prognosis of bearing axial cracking in wind turbine gearboxes. Renew Sustain Energy Rev 127:109888. https://doi.org/10.1016/j.rser.2020.109888
Harris TA (2001) Rolling bearing analysis. Wiley, New York
14:00-17:00: IEC 61400-4:2012, https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/04/42/44298.html. Accessed 7 February 2021
Daems P‑J, Guo Y, Sheng S, Peeters C, Guillaume P, Helsen J (2020) Gaining insights in loading events for wind turbine drivetrain prognostics: preprint. Golden, CO: National Renewable Energy Laboratory. NREL/CP-5000-76286. https://www.nrel.gov/docs/fy20osti/76286.pdf
Keller JA, Lambert SR (2018) Gearbox instrumentation for the investigation of bearing axial cracking https://doi.org/10.2172/1430825
Long H, Wu J, Matthew F, Tavner P (2011) Fatigue analysis of wind turbine gearbox bearings using SCADA data and miner’s rule. European Wind Energy Association Conference (EWEA).
Acknowledgements
The authors gratefully acknowledge the financial support via the MaDurOS program from VLAIO (Flemish Agency for Innovation and Entrepre-neurship) and SIM (Strategic Initiative Materials) through project SBO MaSiWEC (HBC.2017.0606).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ravi, G., Daems, PJ., Nikolic, K. et al. An interdisciplinary framework to predict premature roller element bearing failures in wind turbine gearboxes. Forsch Ingenieurwes 85, 229–240 (2021). https://doi.org/10.1007/s10010-021-00463-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10010-021-00463-0