Skip to main content
Log in

Torque and displacement for a micro electromagnetic harmonic drive system

Drehmoment und Verschiebung für ein mikroelektromagnetisches harmonisches Antriebssystem

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

In this paper, a micro electromagnetic harmonic drive system is proposed. For the drive system, the equation of the displacements for the flexible ring under a magnetic field is deduced. Here, both electromagnetic and Van der Waals forces are considered. The equation of the relationship between flexible ring displacements and coil current is given, and based on this, an equation of the output torque for the drive system is provided. Using these equations, the molecule forces between the flexible ring and stator are investigated, and the relationship between flexible ring displacements and coil current and its changes along with system parameters are analyzed. The output torque of the drive system and its changes along with system parameters are also studied. Findings show that the effects of the initial clearance and the coil current on the Van der Waals force between flexible ring and stator are coupled to each other. For a small initial clearance, the effect of the coil current on the van der Waals force becomes large. When the initial clearance is quite small, the effects of the molecule force on the output torque should be considered.

Zusammenfassung

In diesem Beitrag wird ein elektromagnetisches Mikroantriebssystem vorgestellt. Für das Antriebssystem wird die Gleichung der Verschiebungen für den flexiblen Ring unter einem Magnetfeld hergeleitet. Hierbei werden sowohl elektromagnetische als auch Van-der-Waals-Kräfte berücksichtigt. Die Gleichung der Beziehung zwischen flexiblem Ring und Stator wird untersucht, und die Beziehung zwischen den Verschiebungen des flexiblen Rings und dem Spulenstrom und dessen Änderungen zusammen mit den Systemparametern werden analysiert. Das Ausgangsdrehmoment des Antriebssystems und dessen Änderungen zusammen mit den Systemparametern werden ebenfalls untersucht. Die Ergebnisse zeigen, dass die Auswirkungen der initialen Clearance und des Spulenstroms auf die Van-der-Waals-Kraft zwischen flexiblem Ring und Stator miteinander gekoppelt sind. Bei einer kleinen initialen Clearance ist der Einfluss des Spulenstroms auf die Van-der-Waals-Kraft groß. Wenn die initiale Clearance recht klein ist, sollten die Auswirkungen der Molekülkraft auf das Ausgangsdrehmoment berücksichtigt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Herdeg DF (1963) Electromagnet harmonic drive low inertia servo actuator. AD442879

    Book  Google Scholar 

  2. Janes CF (1965) Electro-magnetic actuator. US Patent, No. 3 200 668

    Google Scholar 

  3. Loechel B, Goettert J, Gruetzner G et al (2008) Extreme aspect ratio NiFe gear wheels for the production of commercially available Micro Harmonic Drive gears. Microsyst Technol 14:1675–1681

    Article  Google Scholar 

  4. Degen R, Slatter R (2006) High speed and low weight micro actuators for high precision assembly applications. In: Ratchev S (ed) Precision assembly technologies for mini and micro products. IPAS 2006. IFIP International Federation for Information Processing, vol 198. Springer, Boston https://doi.org/10.1007/0-387-31277-3_12

    Chapter  Google Scholar 

  5. Rens J, Atallah K, Calverley SD, Howe D (2010) A novel magnetic harmonic gear. IEEE Trans Ind Appl 46(1):206–212

    Article  Google Scholar 

  6. Tjahjowidodo T, Al-Bender F, Van BH (2013) Theoretical modelling and experimental identification of nonlinear torsional behaviour in harmonic drives. Mechatronics 23(5):497–504

    Article  Google Scholar 

  7. Man Y, Zhao Y, Bian C, Wang S, Zhao H (2010) A kind of magnetic gear with high speed ratio. The 3rd International Conference on Information Sciences and Interaction Sciences, Chengdu, pp 632–634 https://doi.org/10.1109/ICICIS.2010.5534677

    Book  Google Scholar 

  8. Lu YS, Lin SM, Hauschild M, Hirzinger G (2013) A torque-ripple compensation scheme for harmonic drive systems. Electr Eng 95(4):357–365

    Article  Google Scholar 

  9. Perez-Diaz J, Diez-Jimenez E et al (2015) Performance of magnetic-superconductor non-contact harmonic drive for cryogenic space applications. Machines 3(3):138–156

    Article  Google Scholar 

  10. Ren YB, Xu LZ (2013) Analysis on the finite element of electromechanic coupling of flexible gear in electromagnetic harmonic drive. Appl Mech Mater 249–250:771–777

    Google Scholar 

  11. Xu L, Liang Y (2016) Torque for an electromagnetic harmonic movable tooth drive system. Mech Mach Theory 98:190–198

    Article  Google Scholar 

  12. Xu L, Liang Y (2014) Output torque for electromagnetic harmonic drive. Adv Mech Eng 7(2):721543

    Article  Google Scholar 

  13. Chigira K, Ando Y, Murakami I, Kurahashi T (2018) Study on structure for increase of a transmit torque on magnetic harmonic gear with stackable structure. Mater Sci Forum 915:77–82

    Article  Google Scholar 

  14. Zhang Y, Zhang J, Liu R (2019) Magnetic field analytical model for magnetic harmonic gears using the fractional linear transformation method. Chin J Electr Eng 5(1):47–52

    Article  Google Scholar 

  15. Jing L, Gong J (2020) Research on eccentric magnetic harmonic gear with halbach array. Prog Electromagn Res Lett 89:37–44

    Article  Google Scholar 

  16. Davey K (2009) A harmonic gear like motor. IEEE International Electric Machines and Drives Conference. IEEE, Miami, pp 1795–1800

    Google Scholar 

  17. Wang C, Yang P, Zhang L (2006) Summary of status on the harmonic gear driving technology. J Mech Transm 30(4):86–88

    Google Scholar 

  18. Fedder GK, Howe RT, Liu TJ, Quevy EP (2008) Technologies for cofabricating MEMS and electronics. Proc IEEE 96(2):306–322

    Article  Google Scholar 

  19. Moore S, Moheimani S (2014) Displacement measurement with a self-sensing MEMS electrostatic drive. J Microelectromech Syst 23(3):511–513

    Article  Google Scholar 

  20. Zhou S (2003) On forces in microelectromechanical systems. Int J Eng Sci 41:313–335

    Article  Google Scholar 

  21. Xu L, Qin L (2007) Electromechanical integrated electrostatic harmonic actuator. Proc Inst Mech Eng I J Syst Control Eng 221(3):487–495

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This project is supported by the National key R & D Program of China (No. 2018YFB1304803) and the Hebei Province Natural Science Foundation in China (No.E2017203021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lizhong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Fu, Y. & Xu, L. Torque and displacement for a micro electromagnetic harmonic drive system. Forsch Ingenieurwes 85, 139–151 (2021). https://doi.org/10.1007/s10010-021-00438-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-021-00438-1

Navigation