Skip to main content
Log in

Impacts of electrification & automation of public bus transportation on sustainability—A case study in Singapore

Untersuchung der Auswirkungen der Elektrifizierung und Automatisierung des öffentlichen Busverkehrs auf die Nachhaltigkeit – Eine Fallstudie in Singapur

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Electrification and automation are attracting interest from the public-transportation sector for their potential to improve energy efficiency, cost efficiency, and environmental performance. Singapore is planning to integrate autonomous buses/minibuses into its transportation system by 2030. However, before the island-wide deployment of autonomous vehicles, there is a need to evaluate their effects on sustainability. A study was therefore conducted in Singapore to evaluate the costs and environmental impacts of autonomous electric minibuses, and the results are revealed and discussed here. This paper presents a case study to demonstrate the impacts of replacing human-driven diesel buses with electrified and automated minibuses on life-cycle costs and greenhouse gas (GHG) emissions for seven routes. The vehicles evaluated were a 12‑m human-driven diesel bus, a 6‑m electrified human-driven minibus, and a 6‑m electrified autonomous minibus. First, the impacts of the vehicle concepts on the scheduling were analysed to obtain the operational strategy and passenger occupancy along the route. A life-cycle assessment (LCA) and a total cost of ownership (TCO) analysis were then conducted to compare the fleet-level costs and GHG emissions. The results showed a 43% reduction in total life-cycle cost for the autonomous electric minibus, compared with the 12‑m diesel bus. The life-cycle GHG emissions of the 6‑m autonomous electric minibus were also reduced by 47% compared with the 12‑m diesel bus, despite the fact that a larger number of the former vehicle were required in the fleet.

Zusammenfassung

Elektrifizierung und Automatisierung stoßen im öffentlichen Verkehr auf Interesse aufgrund ihres Potenzials zur Verbesserung der Energieeffizienz, Kosteneffizienz und Umweltverträglichkeit. Bis zum Jahr 2030 plant Singapur, autonome Busse/Kleinbusse in das vorhandene Verkehrssystem zu integrieren. Vor dem landesweiten Einsatz autonomer Fahrzeuge müssen jedoch deren Auswirkungen auf die Nachhaltigkeit evaluiert werden. Hierfür wurde in Singapur eine Studie durchgeführt, um die Kosten und Umweltauswirkungen autonomer elektrischer Kleinbusse zu bewerten. Die Ergebnisse dieser Studie werden in dieser Veröffentlichung vorgestellt und diskutiert. Es wird eine Fallstudie gezeigt, um die Auswirkungen des Ersatzes von Dieselbussen mit menschlichen Fahrern durch elektrifizierte und automatisierte Kleinbusse auf die Lebenszykluskosten und die Treibhausgasemissionen auf sieben verschiedenen Strecken zu demonstrieren. Die untersuchten Fahrzeuge waren ein 12-m-Dieselbus mit menschlichem Fahrer, ein elektrifizierter 6‑m-Kleinbus mit menschlichem Fahrer und ein elektrifizierter autonomer 6‑m-Kleinbus. Zunächst wurden die Auswirkungen der Fahrzeugkonzepte auf die Fahrpläne analysiert, um die Betriebsstrategie und die Passagierbelegung entlang der Strecken zu ermitteln. Anschließend wurden eine Lebenszyklusanalyse („Life Cycle Assessment“, LCA) und eine Lebenszykluskostenbetrachtung („Total Cost of Ownership“, TCO) durchgeführt, um die Kosten sowie die Treibhausgasemissionen jeweils auf Flottenebene zu vergleichen. Die Ergebnisse zeigen eine Reduzierung der Gesamtlebenszykluskosten für den autonomen elektrischen Kleinbus um 43 % im Vergleich zum 12-m-Dieselbus. Die Treibhausgasemissionen während des gesamten Lebenszyklus des autonomen 6‑m-Kleinbusses wurden im Vergleich zum 12-m-Dieselbus ebenfalls um 47 % reduziert, obwohl bei ersterem mehr Fahrzeuge in der Flotte benötigt wurden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Land Transport Authority (LTA), Personal Communication, 2017.

  2. Land Transport Authority, “Fuel consumption of single-deck buses”, Personal Communication, 2017

  3. Land Transport Authority (LTA), Personal Communication, 2017.

  4. Land Transport Authority (LTA), Personal Communication, 2017.

References

  1. International Energy Agency (2018) CO2 emissions from fuel combustion 2018. OECD Publishing, Paris

    Book  Google Scholar 

  2. Sclar R, Gorguinpour C, Castellanos S, Li X (2019) Barriers to adopting electric buses. German Federal Ministry for Economic Cooperation and Development, Berlin

    Google Scholar 

  3. LTA Singapore (2018) Motor vehicle population by vehicle type. https://www.lta.gov.sg/content/dam/ltaweb/corp/PublicationsResearch/files/FactsandFigures/MVP01-1_MVP_by_type.pdf. Accessed 27 Sept 2019 (Annual Vehicle Statistics)

  4. National Climate Change Secretariat, Prime Minister’s Office (ed) (2016) Take action today: for a carbon-efficient Singapore. National Climate Change Secretariat, Prime Minister’s Office, Singapore

    Google Scholar 

  5. Zackrisson M, Avellán L, Orlenius J (2010) Life cycle assessment of lithium-ion batteries for plug-in hybrid electric vehicles-critical issues. J Clean Prod 18(15):1519–1529

    Article  Google Scholar 

  6. Wang Q, Santini DL (1992) Magnitude and value of electric vehicle emissions reductions for six driving cycles in four US cities with varying air quality problems. Argonne National Lab, Lemont, IL

    Google Scholar 

  7. Hawkins TR, Singh B, Majeau-Bettez G, Strømman AH (2013) Comparative environmental life cycle assessment of conventional and electric vehicles. J Ind Ecol 17(1):53–64

    Article  Google Scholar 

  8. Borén S, Nurhadi L, Ny H (2016) Preference of electric buses in public transport: conclusions from real life testing in eight Swedish municipalities. In: The 18th International Conference on Sustainable Urban Transport and Environment Madrid, pp 255–264

    Google Scholar 

  9. Moataz M, Ryan G, Mark F, Pavlos K (2016) Electric buses: a review of alternative powertrains. Renew Sustain Energy Rev 62:673–684. https://doi.org/10.1016/j.rser.2016.05.019

    Article  Google Scholar 

  10. Borén S (2019) Electric buses’ sustainability effects, noise, energy use, and costs. Int J Sustain Transp 10(3):1–16. https://doi.org/10.1080/15568318.2019.1666324

    Article  Google Scholar 

  11. Lajunen A, Lipman T (2016) Lifecycle cost assessment and carbon dioxide emissions of diesel, natural gas, hybrid electric, fuel cell hybrid and electric transit buses. Energy 106:329–342

    Article  Google Scholar 

  12. Airbib J, Seba T (2017) Rethinking transportation 2020–2030: the disruption of transportation and the collapse of the internal-combustion vehicle and oil industries. RethinkTransportation. RethinkX

    Google Scholar 

  13. Fagnant DJ, Kockelman K (2015) Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp Res Part A Policy Pract 77:167–181. https://doi.org/10.1016/j.tra.2015.04.003

    Article  Google Scholar 

  14. Litman T (2015) Autonomous vehicle implementation predictions: implications for transport planning

    Google Scholar 

  15. Kockelman KM, Li T (2016) Valuing the safety benefits of connected and automated vehicle technologies

    Google Scholar 

  16. Ainsalu J et al (2018) State of the art of automated buses. Sustainability 10(9):3118

    Google Scholar 

  17. Wadud Z, MacKenzie D, Leiby P (2016) Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transp Res Part A Policy Pract 86:1–18. https://doi.org/10.1016/j.tra.2015.12.001

    Article  Google Scholar 

  18. Childress S, Nichols B, Charlton B, Coe S (2015) Using an Activity-Based Model to Explore the Potential Impacts of Automated Vehicles. Transport Res Rec 2493(1):99–106. https://doi.org/10.3141/2493-11

    Article  Google Scholar 

  19. Greenblatt JB, Saxena S (2015) Autonomous taxis could greatly reduce greenhouse-gas emissions of US light-duty vehicles. Nature Clim Change 5(9):860–863. https://doi.org/10.1038/nclimate2685

    Article  Google Scholar 

  20. Rau A, Tiana L, Jaina M, Xiea M, Zhou TLY (2019) Dynamic autonomous road transit (DART) for use-case capacity more than bus. Transp Res Procedia 41:812–823. https://doi.org/10.1016/j.trpro.2019.09.131

    Article  Google Scholar 

  21. GREET (2019) Argonne GREET Model. https://greet.es.anl.gov/. Accessed 7 Jan 2019

  22. APTA, TCRP, MORR Transportation Consulting (2014) An analysis of transit bus axle weight issues

    Google Scholar 

  23. Ongel A, Loewer E, Roemer F, Sethuraman G, Chang F, Lienkamp M (2019) Economic assessment of autonomous electric microtransit vehicles. Sustainability 11(3):648. https://doi.org/10.3390/su11030648

    Article  Google Scholar 

  24. Sethuraman G, Schwarz M, Maxl S, Ongel A, Lienkamp M, Raksincharoensak P (2020) Development of an overall vehicle sizing and packaging tool for autonomous electric buses in the early concept phase. SAE Int J Commer Veh. https://doi.org/10.4271/02-13-01-0002

    Article  Google Scholar 

  25. Ceder A, Hassold S, Dano B (2013) Approaching even-load and even-headway transit timetables using different bus sizes. Public Transp 5(3):193–217. https://doi.org/10.1007/s12469-013-0062-z

    Article  Google Scholar 

  26. Transitlink (2020) Bus enquiry electronic guide. https://www.transitlink.com.sg/eservice/eguide/service_idx.php. Accessed 1 June 2020

  27. Saha JL (1970) An algorithm for bus scheduling problems. Oper Res Q 21(4):463–474

    Article  MathSciNet  Google Scholar 

  28. van Kooten Niekerk ME, van den Akker JM, Hoogeveen JA (2017) Scheduling electric vehicles. Public Transp 9(1/2):155–176. https://doi.org/10.1007/s12469-017-0164-0

    Article  Google Scholar 

  29. International Standard (1997) ISO 14040: First edition 1997-06-15

    Google Scholar 

  30. IFU (ed) (2019) Umberto LCA. https://www.ifu.com/en/umberto/lca-software/. Accessed 5 Sept 2019

  31. ecoinvent 3.5 ecoinvent 3.5—ecoinvent. https://www.ecoinvent.org/database/older-versions/ecoinvent-35/ecoinvent-35.html. Accessed 10 Jan 2019

  32. Thomitzek M, von Drachenfels N, Cerdas F, Herrmann C, Thiede S (2019) Simulation-based assessment of the energy demand in battery cell manufacturing. Procedia CIRP 80:126–131. https://doi.org/10.1016/j.procir.2019.01.097

    Article  Google Scholar 

  33. Schünemann J‑H (2015) Modell zur Bewertung der Herstellkosten von Lithiumionenbatteriezellen, 1st edn. Sierke, Göttingen (Zugl.: Braunschweig, Techn. Univ., Diss., 2015)

    Google Scholar 

  34. Erik E, Lisbeth D (2019on) Lithium-Ion vehicle battery production: status 2019 on energy use, CO2 emissions, use of metals, products environmental footprint, and recycling

    Google Scholar 

  35. Teichert O, Chang F, Ongel A, Lienkamp M (2019) Joint optimization of vehicle battery pack capacity and charging infrastructure for electrified public bus systems. IEEE Trans Transp Electr 5(3):672–682. https://doi.org/10.1109/TTE.2019.2932700

    Article  Google Scholar 

  36. MAN SE (2017) MAN GRI report: corporate responsibility at MAN

    Google Scholar 

  37. EMA Supply Energy market authority. https://www.ema.gov.sg/cmsmedia/Publications_and_Statistics/Publications/ses/2018/energy-supply/index.html. Accessed 5 Oct 2019

  38. DEKRA Umwelt und CO2. https://www.dekra.de/de/umwelt-und-co2/. Accessed 13 May 2019

  39. IINAS (2019) About IINAS. http://iinas.org/about.html. Accessed 15 July 2019

  40. EMISIA SA COPERT. https://www.emisia.com/utilities/copert/. Accessed 15 July 2019

  41. Umweltbundesamt (2019) Schwere Nutzfahrzeuge. https://www.umweltbundesamt.de/themen/verkehr-laerm/emissionsstandards/schwere-nutzfahrzeuge. Accessed 13 May 2019

  42. LithoRec II (2019) Recycling of EV-lithium-Ion-batteries. http://www.lithorec2.de/index.php/en/. Accessed 10 Jan 2019

  43. Kelly S, Apelian D (2016) Automotive aluminum recycling at end of life: a grave-to-gate analysis. http://www.drivealuminum.org/wp-content/uploads/2016/06/Final-Report-Automotive-Aluminum-Recycling-at-End-of-Life-A-Grave-to-Gate-Analysis.pdf. Accessed 9 July 2018 (Center for Resource Recovery and Recycling (CR3), Metal Processing Institute, Worcester Polytechnic Institute)

  44. McGlothlin S (2019) Copper recycling process technology in End of Life Vehicle (ELV) shredder plants. https://www.metalbulletin.com/events/download.ashx/document/speaker/6539/a0ID000000X0jUWMAZ/Presentation. Accessed 7 Feb 2019

  45. NEA (ed) (2019) Waste statistics and overall recycling. https://www.nea.gov.sg/our-services/waste-management/waste-statistics-and-overall-recycling. Accessed 7 Feb 2019

  46. WorldAutoSteel (ed) (2019) Recycling. https://www.worldautosteel.org/life-cycle-thinking/recycling/. Accessed 7 Feb 2019

  47. Land Transport Guru Singapore transport information at a glance! https://landtransportguru.net/. Accessed 1 June 2020

  48. Fries M et al (2017) An overview of costs for vehicle components, fuels, greenhouse gas emissions and total cost of ownership—update 2017

    Google Scholar 

  49. PCWorld (ed) Nvidia talks up its $10,000 autonomous driving computer, the Drive PX. https://www.pcworld.com/article/2898452/nvidia-unveils-10000-autonomous-driving-computer.html. Accessed 1 June 2020

  50. Businesswire (ed) (2020) IHS Markit, Apple Iphone X (A1865) preliminary cost summary. https://mms.businesswire.com/media/20171108005058/en/622977/5/iPhoneX_cost_summary.jpg. Accessed 1 June 2020

  51. BCG (ed) (2020) Revolution in the driver’s seat: the road to autonomous vehicles. https://www.bcg.com/publications/2015/automotive-consumer-insight-revolution-drivers-seat-road-autonomous-vehicles.aspx. Accessed 1 June 2020

  52. SBS Transit (2017) Annual report 2016. Singapore. https://www.sbstransit.com.sg/generalinfo/financial.aspx?year=2019. Accessed 10 Oct 2017

  53. Bösch PM, Becker F, Becker H, Axhausen KW (2018) Cost-based analysis of autonomous mobility services. Transp Policy 64:76–91. https://doi.org/10.1016/j.tranpol.2017.09.005

    Article  Google Scholar 

  54. Lajunen A (2018) Lifecycle costs and charging requirements of electric buses with different charging methods. J Clean Prod 172:56–67. https://doi.org/10.1016/j.jclepro.2017.10.066

    Article  Google Scholar 

  55. Pathak A, Sethuraman G, Krapf S, Ongel A, Lienkamp M (2019) Exploration of optimal powertrain design using realistic load profiles. WEVJ 10(3):56. https://doi.org/10.3390/wevj10030056

    Article  Google Scholar 

  56. USDOT Volpe Center (ed) (2018) Bus lifecycle cost model. https://www.volpe.dot.gov/sites/volpe.dot.gov/files/bus_lifecycle_cost_model.xlsm. Accessed 14 Apr 2018

  57. Schiavone JJ, Beach C (1995) Transit bus service line and cleaning functions (Synthesis of transit practice, 12). National Academy Press, Washington D.C.

    Google Scholar 

  58. MOM (ed) (2020) Progressive wage model for the cleaning sector. https://www.mom.gov.sg/employment-practices/progressive-wage-model/cleaning-sector. Accessed 1 June 2020

  59. FFE Studie: Second-Life-Konzepte für Lithium-Ionen-Batterien aus Elektrofahrzeugen. https://www.ffe.de/download/article/620/StudieSecondLifeKonzepte.pdf. Accessed 1 June 2020 (Begleit- und Wirkungsforschung Schaufenster Elektromobilität (BuW))

Download references

Acknowledgements

The research was conducted under the Campus for Research Excellence and Technological Enterprise (CREATE) with financial support of the Singapore National Research Foundation (NRF).

Author information

Authors and Affiliations

Authors

Contributions

Aditya Pathak predominantly accomplished the conceptualization, methodology, and simulations. Ganesh Sethuraman mainly accomplished data curation, formal analysis, and validation. The first two authors contributed equally to this work. Aybike Ongel is the principal investigator of the project contributed to the overall concept and proofreading of the manuscript. Markus Lienkamp revised the paper critically for intellectual content and agreed to all aspects of the work. As a guarantor, he accepts responsibility for the conceptual integrity of the paper.

Corresponding author

Correspondence to Ganesh Sethuraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A., Sethuraman, G., Ongel, A. et al. Impacts of electrification & automation of public bus transportation on sustainability—A case study in Singapore. Forsch Ingenieurwes 85, 431–442 (2021). https://doi.org/10.1007/s10010-020-00408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-020-00408-z

Navigation