Skip to main content
Log in

Cavitation luminescence in a hydraulic cone throttle valve: simulation and experiments

Kavitationslumineszenz in einer hydraulischen Kegeldrosselklappe: Simulation und Experimente

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

With a focus on cavitation luminescence, simulations and experiments were performed concerning cavitation within a cone throttle valve. The finite element method was used to simulate the flow field of the cone throttle valve. In the simulation, boundary conditions for the fluid–structure coupling were imposed, and a cavitation model was used to obtain the pressure and cavitation distribution within the cone throttle valve. For the experiment, a hydraulic cavitation system was constructed, and a highly transparent polymethyl methacrylate (PMMA) model valve was used to observe the flow field in the cone throttle valve. Four different settings of the system pressure (1, 2, 3, and 4 MPa) and five different valve-opening settings (2, 4, 6, 8, and 10 mm) were set up. Finally, cavitation luminescence was observed using the experimental method. The simulation and experimental results indicate that cavitation in the cone throttle valve is affected by both system pressure and value opening. With the same valve-opening setting, cavitation is more obvious with increasing system pressure. Similarly, under the same system pressure, cavitation is more obvious with a more open valve. During cavitation, blue light is emitted in the cone throttle valve. The degree of luminescence increases with increasing system pressure and valve opening. Compared with the system pressure, valve opening affects the cavitation luminescence more.

Zusammenfassung

Mit dem Schwerpunkt Kavitationslumineszenz wurden Simulationen und Experimente zur Kavitation innerhalb einer Kegeldrosselklappe durchgeführt. Zur Simulation des Strömungsfeldes der Kegeldrosselklappe wurde die Finite-Elemente-Methode verwendet. Bei der Simulation wurden Randbedingungen für die Fluid-Struktur-Kopplung vorgegeben und ein Kavitationsmodell verwendet, um die Druck- und Kavitationsverteilung innerhalb der Kegeldrosselklappe zu erhalten. Für das Experiment wurde ein hydraulisches Kavitationssystem konstruiert, und ein hochtransparentes Polymethylmethacrylat(PMMA)-Modellventil wurde zur Beobachtung des Strömungsfeldes in der Kegeldrosselklappe verwendet. Es wurden vier verschiedene Einstellungen des Systemdrucks (1, 2, 3 und 4 MPa) und fünf verschiedene Ventilöffnungseinstellungen (2, 4, 6, 8 und 10 mm) eingerichtet. Schließlich wurde mit der experimentellen Methode die Kavitationslumineszenz beobachtet. Die Simulation und die experimentellen Ergebnisse zeigen, dass die Kavitation in der Kegeldrosselklappe sowohl vom Systemdruck als auch von der Werteöffnung beeinflusst wird. Bei gleicher Ventilöffnungseinstellung war die Kavitation mit zunehmendem Systemdruck deutlicher zu erkennen. In ähnlicher Weise ist die Kavitation bei gleichem Systemdruck mit einem offeneren Ventil offensichtlicher. Während der Kavitation wird im Kegeldrosselventil blaues Licht ausgesendet. Der Grad der Lumineszenz nimmt mit zunehmendem Systemdruck und der Öffnung des Ventils zu. Im Vergleich zum Systemdruck beeinflusst die Ventilöffnung die Kavitationslumineszenz stärker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Medrano M, Zermatten PJ, Pellone C et al (2011) Hydrodynamic cavitation in microsystems. I. Experiments with deionized water and nanofluids. Phys Fluids 23:127103

    Article  Google Scholar 

  2. Merouani S, Hamdaoui O, Rezgui Y et al (2014) Energy analysis during acoustic bubble oscillations: relationship between bubble energy and sonochemical parameters. Ultrasonics 54(1):227–232

    Article  Google Scholar 

  3. Liu DM, Liu SH, Wu YL et al (2011) A thermodynamic cavitation model applicable to high temperature flow. Thermal Science 151(SI):S95–S101

    Google Scholar 

  4. Margulis MA, Margulis IM (2006) Luminescence mechanism of acoustic and laser-induced cavitation. Acoust Phys 52(3):283–292

    Article  Google Scholar 

  5. Rooze J, Rebrov EV, Schouten JC et al (2013) Dissolved gas and ultrasonic cavitation—a review. Ultrason Sonochem 20:1–11

    Article  Google Scholar 

  6. Gaitan DF, Crum LA, Church CC et al (1992) Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. J Acoust Soc Am 91(6:3166–3183

    Article  Google Scholar 

  7. Xianmei W (2003) The dynamic process and cavitation luminescence of transient single acoustic cavitation bubbles. Graduate University of Chinese Academy of Sciences (Institute of Acoustics), Beijing

    Google Scholar 

  8. Chen QD, Wang L (2005) Luminescence from transient cavitation bubbles in water. Phys Lett A 339(1–2):110–117

    Article  Google Scholar 

  9. Chenghui W (2010) Nonlinear acoustic propagation and cavitation dynamics in liquid media. Shaanxi Normal University, Xi’an

    Google Scholar 

  10. Moss WC, Clarke DB, White JW et al (1996) Sonoluminescence and the prospects for table-top micro-thermonuclear fusion. Phys Lett A 211:69–74

    Article  Google Scholar 

  11. Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc 63B:674–685

    Article  Google Scholar 

  12. Hiller R, Putterman SJ, Barber BP (1992) Spectrum of synchronous picosecond sonoluminescence. Phys Rev Lett 69(8):1182–1184

    Article  Google Scholar 

  13. Hilgenfeldt S, Brenner MP, Grossmann S et al (1998) Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. J Fluid Mech 365:171–204

    Article  Google Scholar 

  14. Matula TJ (1751) Inertial cavitation and single-bubble sonoluminescence. Philos Trans R Soc Lond A 1999(357):225–249

    Google Scholar 

  15. An Y (2006) Mechanism of single-bubble sonoluminescence. Phys Rev E 74(2):26304

    Article  Google Scholar 

  16. Cairós C et al (2014) Effects of argon sparging rate, ultrasonic power, and frequency on multibubble sonoluminescence spectra and bubble dynamics in NaCl aqueous solutions. Ultrason Sonochem 21(6):2044–2051

    Article  Google Scholar 

  17. Cairos C, Mettin R (2017) Simultaneous high-speed recording of sonoluminescence and bubble dynamics in multibubble fields. Phys Rev Lett 118:643016

    Article  Google Scholar 

  18. Thiemann A et al (2017) Sonoluminescence and dynamics of cavitation bubble populations in sulfuric acid. Ultrason Sonochem 34:663–676

    Article  Google Scholar 

  19. Ma X, Xing T, Huang B et al (2018) Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field. Ultrason Sonochem 40(A):480–487

    Article  Google Scholar 

  20. Pishbini M, Sadighi-Bonabi R (2017) A new source of radiation in single-bubble sonoluminescence. Pramana - J Phys 88:724

    Article  Google Scholar 

  21. Podbevsek D, Colombet D, Ledoux G et al (2018) Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels. Ultrason Sonochem 43:175–183

    Article  Google Scholar 

  22. Dezhkunov NV, Francescutto A, Serpe L et al (2018) Sonoluminescence and acoustic emission spectra at different stages of cavitation zone development. Ultrason Sonochem 40:104–109

    Article  Google Scholar 

  23. Nazari-Mahroo H, Pasandideh K, Navid HA et al (2018) Influence of liquid compressibility on the dynamics of single bubble sonoluminescence. Phys Lett A 382(30):1962–1967

    Article  Google Scholar 

  24. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng :269–289 3(2):269–289

    Article  Google Scholar 

  25. Houlin L, Dongxi L, Yong W et al (2012) Applicative evaluation of three cavitating models on cavitating flow calculation in centrifugal pump. Trans Chin Soc Agricult Engin 28(16):54–59

    Google Scholar 

Download references

Acknowledgements

We thank Richard Haase, Ph.D., from Liwen Bianji, Edanz Group China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Funding

This project was supported by the National Key Research and Development Program of China (grant no. 2018YFB2001201), the National Natural Science Foundation of China (grant no. 51805108), the Youth Innovative Talents Training Program of Regular Colleges and Universities in Heilongjiang Province, China, in 2017 (grant no. UNPYSCT-2017205), and the 111 Project (grant no. B18017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Cavitation luminescence in a hydraulic cone throttle valve: simulation and experiments. Forsch Ingenieurwes 84, 151–160 (2020). https://doi.org/10.1007/s10010-020-00395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-020-00395-1

Navigation