Skip to main content
Log in

Tribo-dynamics model of a spur gear pair with gyroscopic effect and flexible shaft

Reibungsdynamikmodell von Stirnradgetriebe mit Kreiseleffekt und biegsamer Welle

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

This study proposes a tribo-dynamic model of a spur gear by coupling an elastic dynamic model and an isothermal elastohydrodynamic lubrication (EHL) model. In this model, the gear shafts are modelled as flexible bodies by the resultant elements of Timoshenko beam and bar elements, and the gyroscopic effect of gear rotors and shafts is also included. The transient and non-Newtonian effects are considered in the EHL model to predict tooth friction forces and moments. Then, an example is provided to analyze the interaction between gear tribology and dynamic behavior. Results indicate that the fluctuations of mesh force and surface tangential velocity caused by gear vibration considerably affect the pressure and thickness of the lubricant film. The gyroscopic effect exerts a significant influence on the dynamic and tribology properties of the gear drive at high speed. The proposed model has important guidance for the design of lubrication systems and dynamic properties in gear drives.

Zusammenfassung

Durch Integration von elastischen dynamischen Modellen und isothermen elastohydrodynamischen Schmiermodellen (EHL), habe ich ein Reibungsdynamikmodell eines Stirnradgetriebes gebaut. In diesem Modell habe ich die Kombination von Timoshenko und Halm verwendet, um die Getriebewelle als flexibles Objekt zu modellieren. Ich habe auch den Kreiseleffekt des Zahnradrotors und der Welle betrachtet. Im EHL-Modell habe ich die momentanen und nicht-Newtonschen Effekte berücksichtigt, um die Reibung und das Drehmoment des Zahnrads vorherzusagen. Anschließend analysierte ich anhand eines Beispiels die gegenseitige Wirkung zwischen Getriebetribologie und Dynamik. Die Ergebnisse zeigen, dass die Eingriffskraft der Zahnradschwingung und die Schwankung der Tangentialgeschwindigkeit der Oberfläche einen großen Einfluss auf den Druck und die Dicke des Schmierölfilms haben. Darüber hinaus hat der Kreiseleffekt einen wichtigen Einfluss auf die dynamische Eigenschaften des Hochgeschwindigkeitsgetriebes und tribologische Leistung. Dieses Modell hat wichtige leitende Bedeutung für Design des Getriebeschmiersystems und Analyse dynamischer Eigenschaften.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li S, Kahraman A (2013) A tribo-dynamic model of a spur gear pair. J Sound Vib 332:4963–4978

    Article  Google Scholar 

  2. Chen S, Tang J, Li Y, Hu Z (2016) Rotordynamics analysis of a double-helical gear transmission system. Meccanica 51:251–268

    Article  MathSciNet  Google Scholar 

  3. Nevzat Özgüven H, Houser DR (1988) Mathematical models used in gear dynamics—A review. J Sound Vib 121:383–411

    Article  Google Scholar 

  4. Wang J, Li R, Peng X (2003) Survey of nonlinear vibration of gear transmission systems. Appl Mech Rev 56:222–227

    Article  Google Scholar 

  5. Gregory RW, Harris SL, Munro RG (1963) Dynamic behaviour of spur gears. Proc Inst Mech Eng 178:207–218

    Article  Google Scholar 

  6. Özgüven HN, Houser DR (1988) Dynamic analysis of high speed gears by using loaded static transmission error. J Sound Vib 125:71–83

    Article  Google Scholar 

  7. Kahraman A, Singh R (1990) Non-linear dynamics of a spur gear pair. J Sound Vib 142:49–75

    Article  Google Scholar 

  8. Blankenship GW, Kahraman A (1995) Steady state forced response of a mechanical oscillator with combined parametric excitation and clearance type non-linearity. J Sound Vib 185:743–765

    Article  Google Scholar 

  9. Kahraman A, Blankenship GW (1997) Experiments on Nonlinear Dynamic Behavior of an Oscillator With Clearance and Periodically Time-Varying Parameters. J Appl Mech 64:217–226

    Article  Google Scholar 

  10. Theodossiades S, Natsiavas S (2000) Non-linear dynamics of gear-pair systems with periodic stiffness and backlash. J Sound Vib 229:287–310

    Article  Google Scholar 

  11. Vaishya M, Singh R (2001) Sliding friction-induced non-linearity and parametric effects in gear dynamics. J Sound Vib 248:671–694

    Article  Google Scholar 

  12. Vaishya M, Singh R (2001) Analysis of periodically varying gear mesh systems with coulomb friction using floquet theory. J Sound Vib 243:525–545

    Article  Google Scholar 

  13. He S, Gunda R, Singh R (2007) Effect of sliding friction on the dynamics of spur gear pair with realistic time-varying stiffness. J Sound Vib 301:927–949

    Article  Google Scholar 

  14. Siyu C, Jinyuan T, Caiwang L, Qibo W (2011) Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mech Mach Theory 46:466–478

    Article  Google Scholar 

  15. Li S (2015) A thermal tribo-dynamic mechanical power loss model for spur gear Pairs. Tribol Int 88:170–178

    Article  Google Scholar 

  16. Li S, Anisetti A (2016) On the flash temperature of gear contacts under the tribo-dynamic condition. Tribol Int 97:6–13

    Article  Google Scholar 

  17. Li S, Anisetti A (2017) A tribo-dynamic contact fatigue model for spur gear pairs. Int J Fatigue 98:81–91

    Article  Google Scholar 

  18. Li S, Anisetti A (2017) The Effect of Spur Gear Tribo-Dynamic Response on Pitting Crack. Nucleation. https://doi.org/10.1115/DETC2017-67003

    Article  Google Scholar 

  19. Ouyang T, Huang H, Zhang N, Mo C, Chen N (2017) A model to predict tribo-dynamic performance of a spur gear pair. Tribol Int 116:449–459

    Article  Google Scholar 

  20. Ouyang T, Huang H, Zhou X, Pan M, Chen N, Lv D (2018) A finite line contact tribo-dynamic model of a spur gear pair. Tribol Int 119:753–765

    Article  Google Scholar 

  21. Kahraman A, Ozguven HN, Houser DR, Zakrajsek JJ (1992) Dynamic Analysis of Geared Rotors by Finite Elements. J Mech Design 114:507–514

    Article  Google Scholar 

  22. Hu Z, Tang J, Zhong J, Chen S, Yan H (2016) Effects of tooth profile modification on dynamic responses of a high speed gear-rotor-bearing system. Mech Syst Signal Process 76–77:294–318

    Article  Google Scholar 

  23. Wei J, Zhang A, Wang G, Qin D, Lim TC, Wang Y, Lin T (2018) A study of nonlinear excitation modeling of helical gears with Modification: Theoretical analysis and experiments. Mech Mach Theory 128:314–335

    Article  Google Scholar 

  24. Sheng X, Li B, Wu Z, Li H (2014) Calculation of ball bearing speed-varying stiffness. Mech Mach Theory 81:166–180

    Article  Google Scholar 

  25. Yang P, Wen S (1990) A Generalized Reynolds Equation for Non-Newtonian Thermal Elastohydrodynamic Lubrication. J Tribol 112:631–636

    Article  Google Scholar 

  26. Li S (2011) A spur gear mesh interface damping model based on elastohydrodynamic contact behavior. Int J Powertrains 1:4–21

    Article  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (NSFC) through Grant No. 51675168, the Natural Science Foundation of Hunan Province 2019JJ40020 and Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University Kfkt2017-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Zheng, M. & Zhou, C. Tribo-dynamics model of a spur gear pair with gyroscopic effect and flexible shaft. Forsch Ingenieurwes 83, 367–377 (2019). https://doi.org/10.1007/s10010-019-00371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-019-00371-4

Navigation