Skip to main content
Log in

The Analysis on Grease Lubrication at Two Tapered Bodies Contact Considering Surface Roughness

Die Analyse der Fettschmierung an zwei konischen Körperkontakten unter Berücksichtigung der Oberflächenrauheit

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

Considering surface roughness and non-equal cross-section feature of tapered body and non-Newtonian characters of grease, fresh grease lubrication problem at two tapered bodies contact in the initial lubrication stage was analyzed, and effects of profile crowning, misalignment (tilting and skewing), sliding and loads were included. The multigrid method was applied to grease lubrication simulation by linear interpolation of rough surfaces and the discrete convolution and FFT (DC-FFT) was employed to compute elastic deformation. The results show that grease film thickness decreases with sliding aggravation. Both surface roughness and tilting motion will weaken the effectiveness of crowning and deteriorate the film bearing capacity. The adaptability of the tapered body with the cut-off profile to tilting motion is better than that with the logarithmic profile. However, if the cut-off profile is adopted, the crowning radius at small end of the tapered body should be larger than that at large end. The effect of minor skewing on grease lubrication is relatively slight. In a wide range of speed, the variation of traction coefficient is similar to the typical Stribeck curve, and the contact would experience three states of full-film, mixed and boundary lubrication.

Zusammenfassung

Unter Berücksichtigung der Oberflächenrauheit und der ungleichen Querschnittsmerkmale des Kegelkörpers und der nicht-Newtonschen Merkmale des Schmierfetts wurde das Problem der Frischfettschmierung bei Kontakt zweier Kegelkörper in der Anfangsschmierungsphase analysiert und die Effekten vom Konturänderung, Fehlausrichtung (Kippen und Schräglauf), Rutschen und Lasten waren enthalten. Die Multigrid-Methode wurde auf die Schmierfettsimulation durch lineare Interpolation von rauen Oberflächen angewendet, und die diskrete Faltung und FFT (DC-FFT) wurden benutzt, um die elastische Verformung zu berechnen. Die Ergebnisse zeigen, dass die Fettfilmdicke mit zunehmender Verschlechterung des Rutschens abnimmt. Sowohl die Oberflächenrauheit als auch die Kippbewegung werden die Wirksamkeit des Konturänderungs schwächen und die Filmtragfähigkeit verschlechtern. Die Anpassungsfähigkeit des sich verjüngenden Körpers mit dem cut-off Profil an eine Kippbewegung ist besser als die mit dem logarithmischen Profil. Wenn jedoch das cut-off Profil übernommen wird, sollte der Balligkeitsradius am kleinen Ende des sich verjüngenden Körpers größer sein als am großen Ende. Der Effekt eines geringen Schräglaufs auf die Fettschmierung ist relativ gering. In einem weiten Geschwindigkeitsbereich ist die Variation des Traktionskoeffizienten der typischen Stribeck-Kurve ähnlich, und der Kontakt würde drei Zustände der Vollfilm-, Misch- und Grenzflächenschmierung erleben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gerstenberger J, Poll G (2001) Rolling bearing lubrication with grease at low temperatures. Tribology 39:303–312

    Google Scholar 

  2. Gonzalez-Perez I, Roda-Casanova V, Fuentes A (2015) Modified geometry of spur gear drives for compensation of shaft deflections. Meccanica 50(7):1855–1867. https://doi.org/10.1007/s11012-015-0129-9

    Article  Google Scholar 

  3. Deng S, Gu J, Cui Y et al (2017) Dynamic analysis of a tapered roller bearing. Ind Lubr Tribol 70(1):191–200

    Article  Google Scholar 

  4. Hu YZ, Zhu D (2000) A full numerical solution to the mixed lubrication in point contacts. J Tribol 122(1):1–9

    Article  Google Scholar 

  5. Noguchi S, Hotta T, Kanada T (2014) Development of tapered roller bearing with low torque: Reduction of sliding friction between large flange and roller end faces machined by precision powder shot peening. Proc Inst Mech Eng J J Eng Tribol 228(9):937–946

    Article  Google Scholar 

  6. Lugt PM (2013) Grease lubrication in rolling bearings. John Wiley, West Sussex, UK

    Google Scholar 

  7. Rezasoltani A, Khonsari MM (2016) Mechanical degradation of lubricating grease in an EHL line contact. Tribol Int 109:541–551

    Article  Google Scholar 

  8. Bujurke NM, Kantli MH, Shettar BM (2017) Jacobian free Newton–GMRES method for the solution of elastohydrodynamic grease lubrication in line contact using wavelet based pre–conditioners. Proc Natl Acad Sci India 4:1–19

    Google Scholar 

  9. Zhang C, Wang S, Zhang Y (2015) Pressure distribution analysis of elastohydrodynamic journal bearing under grease lubrication. In: International Conference on Fluid Power & Mechatronics, pp 74–79

    Google Scholar 

  10. Kauzlarich J, Greenwood JA (1972) Elastohydrodynamic lubrication with Herschel–Bulkley model greases. ASLE Trans 15(4):269–277

    Article  Google Scholar 

  11. Yoo JG, Kim KW (1997) Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel–Bulkley model. Tribol Int 30(6):401–408

    Article  Google Scholar 

  12. Deng L, Ding M, Li GH et al (2009) Numerical analysis on elastohydrodynamic lubrication of automotive wheel bearings lubricated with grease. Lubr Eng 34(10):21–25 (In Chinese)

    Google Scholar 

  13. Liu MY, Zhu CC, Liu HJ (2014) A thermal EHL model for finite line contact with non-Newtonian fluids. Lubr Eng 39(2):48–55 (In Chinese)

    Google Scholar 

  14. Wen SZ, Ying TN (1988) A theoretical and experimental study of EHL lubricated with grease. J Tribol 110(1):38–43

    Article  MathSciNet  Google Scholar 

  15. Cheng J (1990) Elastohydrodynamic grease lubrication theory and numerical solution in line contacts. Lubr Eng 37(4):711–718

    Google Scholar 

  16. Jonkisz W, Krzeminski-Freda H (1982) The properties of elastohydrodynamic grease films. Wear 77(3):277–285

    Article  Google Scholar 

  17. Hurley S, Cann PM (1999) Grease composition and film thickness in rolling contacts. NLGI Spokesman 63(4):12–22

    Google Scholar 

  18. Wang ZJ, Shen XJ, Chen XY et al (2018) Experimental investigation of EHD grease lubrication in finite line contacts. Friction 7(3):1–9. https://doi.org/10.1007/s40544-018-0208-8

    Article  Google Scholar 

  19. Cann PM (2010) Grease lubrication of rolling element bearings—role of the grease thickener. Lubr Sci 19(3):183–196

    Article  Google Scholar 

  20. Tong VC, Hong SW (2015) Characteristics of tapered roller bearings in relation to roller profiles. J Mech Sci Technol 29(7):2913–2919

    Article  Google Scholar 

  21. Lundberg G (1939) Elastische berührung zweier halbräume. Forschung auf dem Gebiet des Ingenieurwesens 10(5):201–211

    Article  Google Scholar 

  22. Zhu D, Ai XL (1997) Point contact EHL based on optically measured three-dimensional rough surfaces. J Tribol 119(3):375–384

    Article  Google Scholar 

  23. Roelands CJA, Vlugter JC, Waterman HI (1963) The viscosity-temperature-pressure relationship of lubricating oils and its correlation with chemical constitution. J Fluids Eng 85(4):601–607

    Google Scholar 

  24. Liu S, Wang Q, Liu G (2000) A versatile method of discrete convolution and FFT (DC-FFT) for contact analyses. Wear 243(1–2):101–111

    Article  Google Scholar 

  25. Hu YZ, Tonder K (1992) Simulation of 3‑D random rough surface by 2‑D digital filter and Fourier analysis. Int J Mach Tools Manuf 32(1):83–90

    Article  Google Scholar 

  26. Dowson D (1992) Friction and traction in lubricated contacts. Fundamentals of friction: macroscopic and microscopic processes. Springer, Netherlands

    Google Scholar 

  27. Hamrock BJ, Jacobson BO (1984) Elastohydrodynamic lubrication of line contacts. ASLE Trans 27(4):275–287

    Article  Google Scholar 

  28. Wymer DG, Cameron A (1974) Elastohydrodynamic lubrication of a line contact. ARCHIVE. Proc Inst Mech Eng 188:221–238

    Article  Google Scholar 

  29. Dyson A, Wilson AR (1965) Paper 3: Film Thicknesses In Elastohydrodynamic Lubrication By Silicone Fluids. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings 180(11):97–112. https://doi.org/10.1243/PIME_CONF_1965_180_323_02

    Article  Google Scholar 

  30. Wen SZ, Huang P (2012) Principles of tribology. Tsinghua University Press, Beijing (In Chinese)

    Google Scholar 

  31. Lu X, Khonsari MM (2007) An experimental investigation of grease—lubricated journal bearings. J Tribol 129(1):84–90

    Article  Google Scholar 

Download references

Funding

The paper is supported by the National Natural Science Foundation of China (Grand No. 51675427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingqiang Xu.

Ethics declarations

Conflict of interest

Z. Wu, Y. Xu and K. Liu declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Xu, Y. & Liu, K. The Analysis on Grease Lubrication at Two Tapered Bodies Contact Considering Surface Roughness. Forsch Ingenieurwes 83, 339–350 (2019). https://doi.org/10.1007/s10010-019-00350-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-019-00350-9

Keywords

Navigation