Skip to main content
Log in

Temperature influence on involute gear measurements

Temperatureinfluss bei Messungen von zylindrischen Evolventenverzahnungen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

An Erratum to this article was published on 30 October 2019

This article has been updated

Abstract

Involute gears are high-stress components used in a variety of drivetrain applications. Small manufacturing tolerances require low measurement uncertainties in production metrology. A well-established traceability chain from industrial facilities to national gear measurement standards is essential for reliable quality control.

Especially for large parts, the ambient and workpiece temperatures contribute to the measurement uncertainty considerably. However, measurements on the shop floor can rarely be performed at exactly 20 °C, which is the international reference temperature for dimensional metrology.

In this paper, the influence of thermal expansion on gear deviations is discussed. Theoretical considerations are compared to results obtained via finite element analysis (FEA) as well as to experimental data. This also includes measurements of PTB’s large gear measurement standards under different temperature conditions. The outcome of this study can be used either to estimate measurement uncertainty contributors in industrial applications or to compensate thermally induced errors in gear measurements.

Zusammenfassung

Verzahnungen mit evolventischem Profil sind stark beanspruchte Bauteile in einer Vielzahl von Getriebeanwendungen. Um diesen Beanspruchungen standzuhalten, sind sehr geringe Fertigungstoleranzen einzuhalten, die wiederum bei der Qualitätsüberprüfung noch viel kleinere Messunsicherheiten erfordern. Für eine zuverlässige Qualitätskontrolle ist eine geschlossene Rückführungskette von nationalen Normalen bis zum Produkt in der Industrie notwendig. Vor allem bei großen Bauteilen liefert die Umgebungs- und Materialtemperatur des Bauteils einen entscheidenden Beitrag zur Messunsicherheit. Allerdings können Messungen unter fertigungsnahen Bedingungen meist nicht bei der definierten Bezugstemperatur von 20 °C durchgeführt werden, bei der die Kalibrierung des Normals stattfand.

In diesem Artikel wird der Einfluss der thermischen Ausdehnung auf Abweichungen der Verzahnungsgeometrie diskutiert. Theoretische Ansätze werden mit den Ergebnissen von Simulationen mit der Finite-Elemente-Methode sowie tatsächlichen Messwerten verglichen. Hierzu wurde das Großverzahnungsnormal der PTB bei verschiedenen Temperaturzuständen gemessen. Die Ergebnisse können entweder dazu verwendet werden, den Einfluss auf die Messunsicherheit richtig abzuschätzen oder die Abweichungen, die durch den thermischen Zustand entstehen, zu korrigieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. ISO 1:2016 – Geometrical product specifications (GPS) – Standard reference temperature for the specification of geometrical and dimensional properties (2016)

  2. Wiemann A, Stein M, Kniel K (2019) Traceable metrology for large involute gears, Precision Engineering vol 55. Elsevier, Amsterdam, pp 330–338

    Google Scholar 

  3. ISO 1328-1:2013-09 – Cylindrical gears – ISO system of flank tolerance classification – Part 1: Definitions and allowable values of deviations relevant to flanks of gear teeth (2013)

  4. VDI/VDE 2612-1:2018 – Measurement and testing of gears – Evaluation of profile and helix measurements on cylindrical gears with involute profile (2018)

  5. DIN 21772:2012 – Gears – Cylindrical involute gears and gear pairs – Definition of deviations (2012)

  6. Härtig F, Stein M (2019) 3D involute gear evaluation – Part I: Workpiece coordinates, Measurement vol 134. Elsevier, Amsterdam, pp 569–573

    Google Scholar 

  7. Lotze W (2005) Zahnradmessung mit Koordinatenmessgeräten. Eigenverlag, Dresden

    Google Scholar 

  8. ISO/IEC Guide 98-3:2008 – Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) (2008)

  9. ISO 15530-3:2011 – Geometrical product specifications (GPS) – Coordinate measuring machines (CMM): Technique for determining the uncertainty of measurement – Part 3: Use of calibrated workpieces or measurement standards (2011)

  10. VDA (2011) Volume 5. Capability of Measurement Processes, 2nd completely revised edition 2010. Verband der deutschen Automobilindustrie e. V., Frankfurt, Germany

    Google Scholar 

  11. ISO 22514-7. Statistical methods in process management – Capability and performance – part 7: Capability of measurement processes (2012)

  12. ISO 14253-1:2017 – Geometrical product specifications (GPS) – Inspection by measurement of workpieces and measuring equipment – Part 1: Decision rules for verifying conformity or nonconformity with specifications (2017)

  13. Heißelmann D, Franke M, Rost K, Wendt K, Kistner T, Schwehn C (2018) Determination of measurement uncertainty by Monte Carlo simulation. Adv Math Comput Tools Metrol Test XI:192–202

    Google Scholar 

Download references

Acknowledgements

This research project was funded by the BMWi. The authors would like to thank Thomas Cailloux from the University of Besançon and Philipp Wortmann from PTB for their support in CAD modeling and FEA simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Kathrin Wiemann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiemann, AK., Stein, M. & Kniel, K. Temperature influence on involute gear measurements. Forsch Ingenieurwes 83, 683–690 (2019). https://doi.org/10.1007/s10010-019-00346-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-019-00346-5

Navigation