Abstract
Recent research showed a significant role of the interaction between traction and torsional vibrations on control design in passenger cars. However, there is a large diversity in the proposed models for drivability control design and validation. This paper gives an overview of popular models in drivability simulation and addresses the quantitative evaluation of these models in a wide range of operating points. Experiments have been performed with diverse excitation signals. Based on these experiments, a number of popular models for control design and validation are identified and compared. A new model is proposed, which will be shown to be a good trade-off between model accuracy and complexity. The results give a guidance for control engineers during the model selection process for either controller concept design, parametrization or validation.
Zusammenfassung
Aktuelle Forschungsergebnisse haben einen wichtigen Einfluss der Wechselwirkung zwischen Traktions- und Drehschwingungen auf das Regelungsdesign in Personenkraftwagen gezeigt. Es gibt jedoch eine große Vielfalt an vorgeschlagenen Modellen für den Entwurf und die Validierung der Fahrbarkeitssteuerung und -regelung. Dieser Beitrag gibt einen Überblick über gängige Modelle in der Fahrbarkeitssimulation und befasst sich mit der quantitativen Bewertung dieser Modelle in einem breiten Bereich von Betriebspunkten. Es wurden Experimente mit verschiedenen Anregungssignalen durchgeführt. Basierend auf diesen Experimenten werden eine Reihe von gängigen Modellen für den Reglerentwurf und die Validierung identifiziert und verglichen. Es wird ein neues Modell vorgeschlagen, das sich als guter Kompromiss zwischen Modellgenauigkeit und Komplexität erweisen wird. Die Ergebnisse geben eine Orientierungshilfe für Regelungstechnikingenieure während des Modellauswahlprozesses für die Konzeption, Parametrierung oder Validierung von Fahrbarkeitsfunktionen.
This is a preview of subscription content, access via your institution.









Notes
All models have been implemented by physical modeling techniques in Simscape™.
The motor torque has been estimated from electrical quantities. The estimator cannot be presented, due to confidentiality reasons.
These algorithms are implemented in Mathwork’s Simulink Optimization and global Optimization Toolbox™ and 100 sampling points have been used.
In [49], the RMS value is given for continuous time. In this work, the trapezoidal rule has been applied for numerical integration.
Abbreviations
- \(\dot{*}\) :
-
Derivative with respect to time
- \(\hat{*}\) :
-
Estimated value
- \(\overline{*}\) :
-
Normalized value
- \(\tilde{*}\) :
-
Physical parameter value
- \(*_{0.5}\) :
-
Median of a value
- \(\alpha\) :
-
Average road elevation
- \(\alpha_{t}\) :
-
Tire model parameter
- \(\beta_{t}\) :
-
Tire model parameter
- \(\gamma_{t}\) :
-
Tire model parameter
- \(\epsilon\) :
-
Slip
- \(\varepsilon\) :
-
Residual
- \(\zeta\) :
-
Axle load ratio
- \(\theta\) :
-
Parameter set
- \(\vartheta\) :
-
Torsion of drivetrain
- \(\vartheta_{b}\) :
-
Relative angle of contact planes
- \(\vartheta_{t}\) :
-
Torsion of tire
- \(\mu\) :
-
Coefficient of traction
- \(\rho_{\text{air}}\) :
-
Air density
- \(\tau\) :
-
Approximate normalized position in backlash
- \(\sigma\) :
-
Longitudinal relaxation length
- \(\varphi_{m}\) :
-
Motor angle
- \(\varphi_{w}\) :
-
Wheel angle
- \(\omega_{0}\) :
-
Natural Frequency
- \(\omega_{m}\) :
-
Rotational motor speed
- \(\omega_{t}\) :
-
Rotational tire speed
- \(\omega_{w}\) :
-
Rotational wheel speed
- \(A_{\text{air}}\) :
-
Cross sectional area of vehicle
- \(D\) :
-
Damping ratio
- \(F_{\alpha}\) :
-
Climbing resistance
- \(F_{\text{air}}\) :
-
Aerodynamic drag force
- \(F_{m,r}\) :
-
Resistance acting on vehicle mass
- \(F_{t}\) :
-
Traction force
- \(F_{rr,f/r}\) :
-
Rolling resistance at front/rear wheel
- \(F_{w,z}\) :
-
Vertical wheel force
- \(F_{x}\) :
-
Longitudinal Force
- \(J_{m}\) :
-
Motor-sided inertia
- \(J_{r}\) :
-
Inertia of two rims
- \(J_{t}\) :
-
Inertia of two tires
- \(J_{ts}\) :
-
Tire-sided inertia
- \(J_{w}\) :
-
Inertia of two wheels
- \(J_{ws}\) :
-
Wheel-sided intertia
- \(K_{i}\) :
-
Gain factors of LPV system
- \(N\) :
-
Number of samples
- \(N_{\text{chirp}}\) :
-
Length of chirp signal
- \(N_{\text{PRMS}}\) :
-
Length of PRMS signal
- \(N_{\text{sigs}}\) :
-
Number of signals
- \(T_{m}\) :
-
Motor torque
- \(T_{r}\) :
-
Wheel resistance torque
- \(T_{w}\) :
-
Wheel torque
- \(a_{\text{rms}}\) :
-
Root mean squared value of \(a_{wx}\)
- \(a_{wx}\) :
-
Frequency weighted acceleration
- \(a_{\tau x}\) :
-
Running root mean square value of \(a_{x}\)
- \(a_{x}\) :
-
Longitudinal acceleration
- \(b\) :
-
Backlash angle
- \(b_{\text{fit}}\) :
-
Fit of simplified backlash model to ideal model at contact
- \(c_{d}\) :
-
Drag coefficient
- \(c_{rr}\) :
-
Coefficient of rolling resistance
- \(c_{\text{slip}}\) :
-
Slip stiffness
- \(d\) :
-
Viscous damping factor of drivetrain
- \(d_{c}\) :
-
Viscous damping factor of chassis
- \(d_{t}\) :
-
Viscous damping factor of tyres
- \(f\) :
-
Cost function
- \(g\) :
-
Gravitational acceleration
- \(i_{\text{gears}}\) :
-
Overall gear ratio
- \(k\) :
-
Stiffness coefficient of drivetrain
- \(k_{c}\) :
-
Stiffness coefficient of chassis
- \(k_{t}\) :
-
Stiffness coefficient of tires
- \(l_{f/r}\) :
-
Distance of center of front/rear wheel to COG in stand-still
- \(m\) :
-
Vehicle mass
- \(n\) :
-
Sampling instant
- \(n_{p}\) :
-
Sampling instant at peak
- \(p\) :
-
Fitting parameter of tanh2 backlash model
- \(r\) :
-
Wheel radius
- \(s\) :
-
Laplace variable
- \(s_{\text{rel}}\) :
-
Relative inertial position of the chassis to the car body
- \(t\) :
-
Time
- u :
-
Input vector in state-space system
- v :
-
Inertial vehicle speed
- \(v_{c}\) :
-
Inertial wheel and chassis speed
- \(w_{\text{chirp}}\) :
-
Weighting of chirp signal
- \(\bf{x}\) :
-
State vector of state-space system
- \(y\) :
-
System output
- \(\bf{y}\) :
-
Output vector from state-space system
- \(y_{c}\) :
-
Second order characteristics
- NRMSF:
-
Normalised root mean square fit
- NMF:
-
Normalised root mean square median fit
- RMF:
-
Relative root mean square median fit
- RAE:
-
Relative error of \(a_{\text{rms}}\)
References
Alt B, Antritter F, Svaricek F, Wobbe F, Böhme T, Schultalbers DM (2011) Two degree of freedom structure for reduction of driveline oscillations. In: AUTOREG, Baden-Baden. VDI Berichte 2135, pp 361–374
Angeringer U, Horn M (2011) Sliding mode drive line control for an electrically driven vehicle. In: International Conference on Control Applications (CCA). IEEE, Denver, pp 521–526 https://doi.org/10.1109/CCA.2011.6044416
Bartram M, Mavros G, Biggs S (2010) A study on the effect of road friction on driveline vibrations. J Multi-body Dyn 224(4):321–340. https://doi.org/10.1243/14644193JMBD266
Baumann J, Torkzadeh DD, Ramstein A, Kiencke U, Schlegl T (2006) Model-based predictive anti-jerk control. Control Eng Pract 14(3):259–266. https://doi.org/10.1016/j.conengprac.2005.03.026
Biermann JW, Hagerodt B (1999) Investigation of the clonk phenomenon in vehicle transmissions – Measurement, modelling and simulation. J Multi-body Dyn 213(1):53–60 (https://doi.org/10.1243/1464419991544054)
Bohn C, Unbehauen H (2016) Identifikation dynamischer Systeme. Springer, Wiesbaden https://doi.org/10.1007/978-3-8348-2197-3
Bovee K (2015) Optimal control of electrified powertrains with the use of drive quality criteria. Ohio State University, Ohio (Ph.d. thesis)
Bovee K, Rizzoni G (2016) Model-based torque shaping for smooth acceleration response in hybrid electric vehicles. In: International Symposium on Advances in Automotive Control (AAC). IFAC, Norrköping https://doi.org/10.1016/j.ifacol.2016.08.077
Branch MA, Coleman TF, Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. Siam J Sci Comput 21(1):1–23. https://doi.org/10.1137/S1064827595289108
Caruntu CF, Balau AE, Lazar M, van den Bosch P, Di Cairano S (2011) A predictive control solution for driveline oscillations damping. In: International Conference on Hybrid systems: Computation and Control (HSCC). ACM, New York, p 181 https://doi.org/10.1145/1967701.1967728
Caruntu CF, Lazar C (2012) Real-time networked predictive control of a vehicle drivetrain with backlash. In: Nonlinear model predictive control conference. IFAC, Noordwijkerhout, pp 484–489 https://doi.org/10.3182/20120823-5-NL-3013.00066
Clover CL, Bernard JE (1998) Longitudinal tire dynamics. Veh Syst Dyn 29(4):231–259. https://doi.org/10.1080/00423119808969374
Couderc P, Callenaere J, Der Hagopian J, Ferraris G, Kassai A, Borjesson Y, Verdillon L, Gaimard S (1998) Vehicle driveline dynamic behaviour: experimentation and simulation. J Sound Vib 218(1):133–157. https://doi.org/10.1006/jsvi.1998.1808
Crowther AR, Janello C, Singh R (2007) Quantification of clearance-induced impulsive sources in a torsional system. J Sound Vib 307(3-5):428–451. https://doi.org/10.1016/j.jsv.2007.05.055
Eicke S, Dagen M, Ortmaier T (2015) Experimental investigation of power hop in passenger cars. SAE Tech Pap. https://doi.org/10.4271/2015-01-2185
Fan J (1994) Theoretische und experimentelle Untersuchungen zu Längsschwingungen von Pkw (Ruckeln). TU Braunschweig, Braunschweig (Ph.d. thesis)
Figel KJ (2019) Backlash models for drivability simulation. Tech. rep. Bundeswehr University Munich, Munich https://doi.org/10.13140/RG.2.2.29154.79045
Figel KJ, Schultalbers M, Svaricek F (2019) Experimental analysis of driveline jerking with focus on the interaction of traction and torsional vibrations. In: International Symposium on Advances in Automotive Control (AAC). IFAC, Orléans
Götting G (2004) Dynamische Antriebsregelung von Elektrostraßenfahrzeugen unter Berücksichtigung eines schwingungsfähigen Antriebsstrangs. RWTH Aachen, Aachen (Ph.d. thesis)
Grotjahn M, Quernheim L, Zemke S (2006) Modelling and identification of car driveline dynamics for anti-jerk controller design. In: International Conference on Mechatronics. IEEE, Budapest, pp 131–136 https://doi.org/10.1109/ICMECH.2006.252510
Hagerodt B (1998) Untersuchung zu Lastwechselreaktionen frontgetriebener Personenkraftwagen. RWTH Aachen, Aachen (Ph.d. thesis)
Heißing B, Ersoy M, Gies S (2011) Chassis handbook, 1st edn. Vieweg+Teubner, Wiesbaden https://doi.org/10.1007/978-3-8348-9789-3
Hirschberg W, Rill G, Weinfurter H (2007) Tire model TMeasy. Veh Syst Dyn 45(S1):101–119. https://doi.org/10.1080/00423110701776284
Hülsmann A (2007) Methodenentwicklung zur virtuellen Auslegung von Lastwechselphänomenen in Pkw. TU München, München (Ph.d. thesis)
ISO 2631 (1997) Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements
ISO 8041 (2005) Human response to vibration – Measuring instrumentation
König DH, Riemann B, Bohning M, Syrnik R, Rinderknecht S (2014) Robust anti-jerk control for electric vehicles with multi-speed transmission. In: Conference on decision and control. IEEE, Los Angeles, pp 3298–3303 https://doi.org/10.1109/CDC.2014.7039899
Lagerberg A, Egardt B (2004) Estimation of backlash in automotive powertrains — an experimental validation. Adv Automot Control 37(22):47–52. https://doi.org/10.1016/S1474-6670(17)30320-8
Liu W, He H, Sun F, Wang H (2018) Optimal design of adaptive shaking vibration control for electric vehicles. Veh Syst Dyn. https://doi.org/10.1080/00423114.2018.1447676
Ljung L (1999) System identification: theory for the user, 2nd edn. John Wiley & Sons, Upper Saddle River https://doi.org/10.1002/047134608X.W1046
Ljung L (2018) System identification toolbox™ – user’s guide
Menne M, De Doncker RW (2000) Active damping of electric vehicle drivetrain oscillations. In: International Conference and Exhibition on Power Electronics and Motions Control. IEEE, Kosice, pp 92–97
Milanese M, Norton J, Piet-Lahanier H, Walter É (eds) (1996) Bounding approaches to system identification. Springer, Boston https://doi.org/10.1007/978-1-4757-9545-5
Nordin M, Bodin P, Gutman PO (1997) New models and identification methods for backlash and gear play. Int J Adapt Control Signal Process 11:49–63
Orlov YV (2009) Discontinuous systems. Communications and control engineering. Springer, London https://doi.org/10.1007/978-1-84800-984-4
Pacejka HB, Besselink I (2012) Tire and Vehicle Dynamics vol 3. Butterworth-Heinemann, Oxford
Pham T, Bushnell L (2015) Two-degree-of-freedom damping control of driveline oscillations caused by pedal tip-in maneuver. In: American Control Conference (ACC). IEEE, Chicago, pp 1425–1432 https://doi.org/10.1109/ACC.2015.7170933
Pham T, Seifried R, Hock A, Scholz C (2016) Nonlinear flatness-based control of driveline oscillations for a powertrain with backlash traversing. Adv Automot Control 49(11):749–755. https://doi.org/10.1016/j.ifacol.2016.08.109
Pillas J (2017) Modellbasierte Optimierung dynamischer Fahrmanöver mittels Prüfständen. Technische Universität Darmstadt, Darmstadt (Ph.d. thesis)
Rabeih EMA, Crolla DA (1996) Coupling of driveline and body vibrations in trucks. In: International trucks and bus meeting and exposition. SAE, Detroit https://doi.org/10.4271/962206
Raut R, Swamy MNS (2010) Modern analog filter analysis and design: a practical approach. Wiley-VCH, Weinheim
Rosenberger M, Kirschneck M, Koch T, Lienkamp M (2011) Hybrid-ABS: Integration der elektrischen Antriebsmotoren in die ABS-Regelung. In: Automobiltechnisches Kolloquium München München. vol 2, pp 427–445
Schwenger A (2005) Aktive Dämpfung von Triebstrangschwingungen. Universität Hannover, Hannover (Ph.d. thesis)
Syed F, Kuang M, Hao Y (2009) Active damping wheel-torque control system to reduce driveline oscillations in a power-split hybrid electric vehicle. Trans Veh Technol 58(9):4769–4785. https://doi.org/10.1109/TVT.2009.2025953
Syed FU, Kuang ML, Czubay J, Ying H, Member S (2006) Derivation and experimental validation of a power-split hybrid electric vehicle model. IEEE Trans Veh Technol 55(6):1731–1747. https://doi.org/10.1109/TVT.2006.878563
Templin P (2008) Simultaneous estimation of driveline dynamics and backlash size for control design. In: International Conference on Control Applications (CCA). IEEE, San Antonio, pp 13–18 https://doi.org/10.1109/CCA.2008.4629642
Templin P, Egardt B (2009) An LQR torque compensator for driveline oscillation damping. In: International Conference on Control Applications. IEEE, Saint Petersburg, pp 352–356 https://doi.org/10.1109/CCA.2009.5281020
Togai K, Choi K, Takeuchi T (2002) Vibration suppression strategy with model based command shaping: application to passenger car powertrain. In: SICE Annual Conference SICE, Osaka. vol 2, pp 941–943 https://doi.org/10.1109/SICE.2002.1195291
VDI-Richtlinie 2057 (2015) Human exposure to mechanical vibrations: Whole-body vibration
Walter A (2008) Regelung und Diagnose von Fahrzeug Antriebssträngen mit Zweimassenschwungrad. Karlsruher Institut für Technologie, Karlsruhe (Ph.d. thesis)
Canudas-de Wit C, Tsiotras P, Velenis E, Basset M, Gissinger G (2003) Dynamic friction models for road/tire longitudinal interaction. Veh Syst Dyn 39(3):189–226. https://doi.org/10.1076/vesd.39.3.189.14152
Yeap KZ, Müller S (2016) Characterising the interaction of individual-wheel drives with traction by linear parameter-varying model: a method for analysing the role of traction in torsional vibrations in wheel drives and active damping. Veh Syst Dyn 54(2):258–280. https://doi.org/10.1080/00423114.2015.1131306
Acknowledgements
Thanks to Florian Brunner for support in ECU-Bypass Coding, Sven Dannenberg for support in transmission control and Andreas Daasch and Dieter Schwarzmann for the provision of a test vehicle.
Funding
This research has been partly funded by IAV GmbH, Gifhorn, Germany
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
Rights and permissions
About this article
Cite this article
Figel, K.J., Schultalbers, M. & Svaricek, F. Review and experimental evaluation of models for drivability simulation with focus on tire modeling. Forsch Ingenieurwes 83, 105–118 (2019). https://doi.org/10.1007/s10010-019-00319-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10010-019-00319-8