Skip to main content

Review and experimental evaluation of models for drivability simulation with focus on tire modeling

Übersicht und experimentelle Bewertung von Modellen für die Fahrbarkeitssimulation mit Fokus auf der Modellierung des Reifens

Abstract

Recent research showed a significant role of the interaction between traction and torsional vibrations on control design in passenger cars. However, there is a large diversity in the proposed models for drivability control design and validation. This paper gives an overview of popular models in drivability simulation and addresses the quantitative evaluation of these models in a wide range of operating points. Experiments have been performed with diverse excitation signals. Based on these experiments, a number of popular models for control design and validation are identified and compared. A new model is proposed, which will be shown to be a good trade-off between model accuracy and complexity. The results give a guidance for control engineers during the model selection process for either controller concept design, parametrization or validation.

Zusammenfassung

Aktuelle Forschungsergebnisse haben einen wichtigen Einfluss der Wechselwirkung zwischen Traktions- und Drehschwingungen auf das Regelungsdesign in Personenkraftwagen gezeigt. Es gibt jedoch eine große Vielfalt an vorgeschlagenen Modellen für den Entwurf und die Validierung der Fahrbarkeitssteuerung und -regelung. Dieser Beitrag gibt einen Überblick über gängige Modelle in der Fahrbarkeitssimulation und befasst sich mit der quantitativen Bewertung dieser Modelle in einem breiten Bereich von Betriebspunkten. Es wurden Experimente mit verschiedenen Anregungssignalen durchgeführt. Basierend auf diesen Experimenten werden eine Reihe von gängigen Modellen für den Reglerentwurf und die Validierung identifiziert und verglichen. Es wird ein neues Modell vorgeschlagen, das sich als guter Kompromiss zwischen Modellgenauigkeit und Komplexität erweisen wird. Die Ergebnisse geben eine Orientierungshilfe für Regelungstechnikingenieure während des Modellauswahlprozesses für die Konzeption, Parametrierung oder Validierung von Fahrbarkeitsfunktionen.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Notes

  1. All models have been implemented by physical modeling techniques in Simscape™.

  2. The motor torque has been estimated from electrical quantities. The estimator cannot be presented, due to confidentiality reasons.

  3. These algorithms are implemented in Mathwork’s Simulink Optimization and global Optimization Toolbox™ and 100 sampling points have been used.

  4. In [49], the RMS value is given for continuous time. In this work, the trapezoidal rule has been applied for numerical integration.

Abbreviations

\(\dot{*}\) :

Derivative with respect to time

\(\hat{*}\) :

Estimated value

\(\overline{*}\) :

Normalized value

\(\tilde{*}\) :

Physical parameter value

\(*_{0.5}\) :

Median of a value

\(\alpha\) :

Average road elevation

\(\alpha_{t}\) :

Tire model parameter

\(\beta_{t}\) :

Tire model parameter

\(\gamma_{t}\) :

Tire model parameter

\(\epsilon\) :

Slip

\(\varepsilon\) :

Residual

\(\zeta\) :

Axle load ratio

\(\theta\) :

Parameter set

\(\vartheta\) :

Torsion of drivetrain

\(\vartheta_{b}\) :

Relative angle of contact planes

\(\vartheta_{t}\) :

Torsion of tire

\(\mu\) :

Coefficient of traction

\(\rho_{\text{air}}\) :

Air density

\(\tau\) :

Approximate normalized position in backlash

\(\sigma\) :

Longitudinal relaxation length

\(\varphi_{m}\) :

Motor angle

\(\varphi_{w}\) :

Wheel angle

\(\omega_{0}\) :

Natural Frequency

\(\omega_{m}\) :

Rotational motor speed

\(\omega_{t}\) :

Rotational tire speed

\(\omega_{w}\) :

Rotational wheel speed

\(A_{\text{air}}\) :

Cross sectional area of vehicle

\(D\) :

Damping ratio

\(F_{\alpha}\) :

Climbing resistance

\(F_{\text{air}}\) :

Aerodynamic drag force

\(F_{m,r}\) :

Resistance acting on vehicle mass

\(F_{t}\) :

Traction force

\(F_{rr,f/r}\) :

Rolling resistance at front/rear wheel

\(F_{w,z}\) :

Vertical wheel force

\(F_{x}\) :

Longitudinal Force

\(J_{m}\) :

Motor-sided inertia

\(J_{r}\) :

Inertia of two rims

\(J_{t}\) :

Inertia of two tires

\(J_{ts}\) :

Tire-sided inertia

\(J_{w}\) :

Inertia of two wheels

\(J_{ws}\) :

Wheel-sided intertia

\(K_{i}\) :

Gain factors of LPV system

\(N\) :

Number of samples

\(N_{\text{chirp}}\) :

Length of chirp signal

\(N_{\text{PRMS}}\) :

Length of PRMS signal

\(N_{\text{sigs}}\) :

Number of signals

\(T_{m}\) :

Motor torque

\(T_{r}\) :

Wheel resistance torque

\(T_{w}\) :

Wheel torque

\(a_{\text{rms}}\) :

Root mean squared value of \(a_{wx}\)

\(a_{wx}\) :

Frequency weighted acceleration

\(a_{\tau x}\) :

Running root mean square value of \(a_{x}\)

\(a_{x}\) :

Longitudinal acceleration

\(b\) :

Backlash angle

\(b_{\text{fit}}\) :

Fit of simplified backlash model to ideal model at contact

\(c_{d}\) :

Drag coefficient

\(c_{rr}\) :

Coefficient of rolling resistance

\(c_{\text{slip}}\) :

Slip stiffness

\(d\) :

Viscous damping factor of drivetrain

\(d_{c}\) :

Viscous damping factor of chassis

\(d_{t}\) :

Viscous damping factor of tyres

\(f\) :

Cost function

\(g\) :

Gravitational acceleration

\(i_{\text{gears}}\) :

Overall gear ratio

\(k\) :

Stiffness coefficient of drivetrain

\(k_{c}\) :

Stiffness coefficient of chassis

\(k_{t}\) :

Stiffness coefficient of tires

\(l_{f/r}\) :

Distance of center of front/rear wheel to COG in stand-still

\(m\) :

Vehicle mass

\(n\) :

Sampling instant

\(n_{p}\) :

Sampling instant at peak

\(p\) :

Fitting parameter of tanh2 backlash model

\(r\) :

Wheel radius

\(s\) :

Laplace variable

\(s_{\text{rel}}\) :

Relative inertial position of the chassis to the car body

\(t\) :

Time

u :

Input vector in state-space system

v :

Inertial vehicle speed

\(v_{c}\) :

Inertial wheel and chassis speed

\(w_{\text{chirp}}\) :

Weighting of chirp signal

\(\bf{x}\) :

State vector of state-space system

\(y\) :

System output

\(\bf{y}\) :

Output vector from state-space system

\(y_{c}\) :

Second order characteristics

NRMSF:

Normalised root mean square fit

NMF:

Normalised root mean square median fit

RMF:

Relative root mean square median fit

RAE:

Relative error of \(a_{\text{rms}}\)

References

  1. Alt B, Antritter F, Svaricek F, Wobbe F, Böhme T, Schultalbers DM (2011) Two degree of freedom structure for reduction of driveline oscillations. In: AUTOREG, Baden-Baden. VDI Berichte 2135, pp 361–374

  2. Angeringer U, Horn M (2011) Sliding mode drive line control for an electrically driven vehicle. In: International Conference on Control Applications (CCA). IEEE, Denver, pp 521–526 https://doi.org/10.1109/CCA.2011.6044416

    Google Scholar 

  3. Bartram M, Mavros G, Biggs S (2010) A study on the effect of road friction on driveline vibrations. J Multi-body Dyn 224(4):321–340. https://doi.org/10.1243/14644193JMBD266

    Google Scholar 

  4. Baumann J, Torkzadeh DD, Ramstein A, Kiencke U, Schlegl T (2006) Model-based predictive anti-jerk control. Control Eng Pract 14(3):259–266. https://doi.org/10.1016/j.conengprac.2005.03.026

    Article  Google Scholar 

  5. Biermann JW, Hagerodt B (1999) Investigation of the clonk phenomenon in vehicle transmissions – Measurement, modelling and simulation. J Multi-body Dyn 213(1):53–60 (https://doi.org/10.1243/1464419991544054)

    Google Scholar 

  6. Bohn C, Unbehauen H (2016) Identifikation dynamischer Systeme. Springer, Wiesbaden https://doi.org/10.1007/978-3-8348-2197-3

    Book  Google Scholar 

  7. Bovee K (2015) Optimal control of electrified powertrains with the use of drive quality criteria. Ohio State University, Ohio (Ph.d. thesis)

    Google Scholar 

  8. Bovee K, Rizzoni G (2016) Model-based torque shaping for smooth acceleration response in hybrid electric vehicles. In: International Symposium on Advances in Automotive Control (AAC). IFAC, Norrköping https://doi.org/10.1016/j.ifacol.2016.08.077

    Google Scholar 

  9. Branch MA, Coleman TF, Li Y (1999) A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. Siam J Sci Comput 21(1):1–23. https://doi.org/10.1137/S1064827595289108

    Article  MathSciNet  MATH  Google Scholar 

  10. Caruntu CF, Balau AE, Lazar M, van den Bosch P, Di Cairano S (2011) A predictive control solution for driveline oscillations damping. In: International Conference on Hybrid systems: Computation and Control (HSCC). ACM, New York, p 181 https://doi.org/10.1145/1967701.1967728

    Google Scholar 

  11. Caruntu CF, Lazar C (2012) Real-time networked predictive control of a vehicle drivetrain with backlash. In: Nonlinear model predictive control conference. IFAC, Noordwijkerhout, pp 484–489 https://doi.org/10.3182/20120823-5-NL-3013.00066

    Google Scholar 

  12. Clover CL, Bernard JE (1998) Longitudinal tire dynamics. Veh Syst Dyn 29(4):231–259. https://doi.org/10.1080/00423119808969374

    Article  Google Scholar 

  13. Couderc P, Callenaere J, Der Hagopian J, Ferraris G, Kassai A, Borjesson Y, Verdillon L, Gaimard S (1998) Vehicle driveline dynamic behaviour: experimentation and simulation. J Sound Vib 218(1):133–157. https://doi.org/10.1006/jsvi.1998.1808

    Article  Google Scholar 

  14. Crowther AR, Janello C, Singh R (2007) Quantification of clearance-induced impulsive sources in a torsional system. J Sound Vib 307(3-5):428–451. https://doi.org/10.1016/j.jsv.2007.05.055

    Article  Google Scholar 

  15. Eicke S, Dagen M, Ortmaier T (2015) Experimental investigation of power hop in passenger cars. SAE Tech Pap. https://doi.org/10.4271/2015-01-2185

    Google Scholar 

  16. Fan J (1994) Theoretische und experimentelle Untersuchungen zu Längsschwingungen von Pkw (Ruckeln). TU Braunschweig, Braunschweig (Ph.d. thesis)

    Google Scholar 

  17. Figel KJ (2019) Backlash models for drivability simulation. Tech. rep. Bundeswehr University Munich, Munich https://doi.org/10.13140/RG.2.2.29154.79045

    Google Scholar 

  18. Figel KJ, Schultalbers M, Svaricek F (2019) Experimental analysis of driveline jerking with focus on the interaction of traction and torsional vibrations. In: International Symposium on Advances in Automotive Control (AAC). IFAC, Orléans

    Google Scholar 

  19. Götting G (2004) Dynamische Antriebsregelung von Elektrostraßenfahrzeugen unter Berücksichtigung eines schwingungsfähigen Antriebsstrangs. RWTH Aachen, Aachen (Ph.d. thesis)

    Google Scholar 

  20. Grotjahn M, Quernheim L, Zemke S (2006) Modelling and identification of car driveline dynamics for anti-jerk controller design. In: International Conference on Mechatronics. IEEE, Budapest, pp 131–136 https://doi.org/10.1109/ICMECH.2006.252510

    Google Scholar 

  21. Hagerodt B (1998) Untersuchung zu Lastwechselreaktionen frontgetriebener Personenkraftwagen. RWTH Aachen, Aachen (Ph.d. thesis)

    Google Scholar 

  22. Heißing B, Ersoy M, Gies S (2011) Chassis handbook, 1st edn. Vieweg+Teubner, Wiesbaden https://doi.org/10.1007/978-3-8348-9789-3

    Book  Google Scholar 

  23. Hirschberg W, Rill G, Weinfurter H (2007) Tire model TMeasy. Veh Syst Dyn 45(S1):101–119. https://doi.org/10.1080/00423110701776284

    Article  Google Scholar 

  24. Hülsmann A (2007) Methodenentwicklung zur virtuellen Auslegung von Lastwechselphänomenen in Pkw. TU München, München (Ph.d. thesis)

    Google Scholar 

  25. ISO 2631 (1997) Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration-Part 1: General requirements

  26. ISO 8041 (2005) Human response to vibration – Measuring instrumentation

  27. König DH, Riemann B, Bohning M, Syrnik R, Rinderknecht S (2014) Robust anti-jerk control for electric vehicles with multi-speed transmission. In: Conference on decision and control. IEEE, Los Angeles, pp 3298–3303 https://doi.org/10.1109/CDC.2014.7039899

    Chapter  Google Scholar 

  28. Lagerberg A, Egardt B (2004) Estimation of backlash in automotive powertrains — an experimental validation. Adv Automot Control 37(22):47–52. https://doi.org/10.1016/S1474-6670(17)30320-8

    Google Scholar 

  29. Liu W, He H, Sun F, Wang H (2018) Optimal design of adaptive shaking vibration control for electric vehicles. Veh Syst Dyn. https://doi.org/10.1080/00423114.2018.1447676

    Google Scholar 

  30. Ljung L (1999) System identification: theory for the user, 2nd edn. John Wiley & Sons, Upper Saddle River https://doi.org/10.1002/047134608X.W1046

    MATH  Google Scholar 

  31. Ljung L (2018) System identification toolbox™ – user’s guide

    Google Scholar 

  32. Menne M, De Doncker RW (2000) Active damping of electric vehicle drivetrain oscillations. In: International Conference and Exhibition on Power Electronics and Motions Control. IEEE, Kosice, pp 92–97

    Google Scholar 

  33. Milanese M, Norton J, Piet-Lahanier H, Walter É (eds) (1996) Bounding approaches to system identification. Springer, Boston https://doi.org/10.1007/978-1-4757-9545-5

    MATH  Google Scholar 

  34. Nordin M, Bodin P, Gutman PO (1997) New models and identification methods for backlash and gear play. Int J Adapt Control Signal Process 11:49–63

    Article  MATH  Google Scholar 

  35. Orlov YV (2009) Discontinuous systems. Communications and control engineering. Springer, London https://doi.org/10.1007/978-1-84800-984-4

    Google Scholar 

  36. Pacejka HB, Besselink I (2012) Tire and Vehicle Dynamics vol 3. Butterworth-Heinemann, Oxford

    Google Scholar 

  37. Pham T, Bushnell L (2015) Two-degree-of-freedom damping control of driveline oscillations caused by pedal tip-in maneuver. In: American Control Conference (ACC). IEEE, Chicago, pp 1425–1432 https://doi.org/10.1109/ACC.2015.7170933

    Chapter  Google Scholar 

  38. Pham T, Seifried R, Hock A, Scholz C (2016) Nonlinear flatness-based control of driveline oscillations for a powertrain with backlash traversing. Adv Automot Control 49(11):749–755. https://doi.org/10.1016/j.ifacol.2016.08.109

    Google Scholar 

  39. Pillas J (2017) Modellbasierte Optimierung dynamischer Fahrmanöver mittels Prüfständen. Technische Universität Darmstadt, Darmstadt (Ph.d. thesis)

    Google Scholar 

  40. Rabeih EMA, Crolla DA (1996) Coupling of driveline and body vibrations in trucks. In: International trucks and bus meeting and exposition. SAE, Detroit https://doi.org/10.4271/962206

    Google Scholar 

  41. Raut R, Swamy MNS (2010) Modern analog filter analysis and design: a practical approach. Wiley-VCH, Weinheim

    Book  Google Scholar 

  42. Rosenberger M, Kirschneck M, Koch T, Lienkamp M (2011) Hybrid-ABS: Integration der elektrischen Antriebsmotoren in die ABS-Regelung. In: Automobiltechnisches Kolloquium München München. vol 2, pp 427–445

    Google Scholar 

  43. Schwenger A (2005) Aktive Dämpfung von Triebstrangschwingungen. Universität Hannover, Hannover (Ph.d. thesis)

    Google Scholar 

  44. Syed F, Kuang M, Hao Y (2009) Active damping wheel-torque control system to reduce driveline oscillations in a power-split hybrid electric vehicle. Trans Veh Technol 58(9):4769–4785. https://doi.org/10.1109/TVT.2009.2025953

    Article  Google Scholar 

  45. Syed FU, Kuang ML, Czubay J, Ying H, Member S (2006) Derivation and experimental validation of a power-split hybrid electric vehicle model. IEEE Trans Veh Technol 55(6):1731–1747. https://doi.org/10.1109/TVT.2006.878563

    Article  Google Scholar 

  46. Templin P (2008) Simultaneous estimation of driveline dynamics and backlash size for control design. In: International Conference on Control Applications (CCA). IEEE, San Antonio, pp 13–18 https://doi.org/10.1109/CCA.2008.4629642

    Google Scholar 

  47. Templin P, Egardt B (2009) An LQR torque compensator for driveline oscillation damping. In: International Conference on Control Applications. IEEE, Saint Petersburg, pp 352–356 https://doi.org/10.1109/CCA.2009.5281020

    Google Scholar 

  48. Togai K, Choi K, Takeuchi T (2002) Vibration suppression strategy with model based command shaping: application to passenger car powertrain. In: SICE Annual Conference SICE, Osaka. vol 2, pp 941–943 https://doi.org/10.1109/SICE.2002.1195291

    Google Scholar 

  49. VDI-Richtlinie 2057 (2015) Human exposure to mechanical vibrations: Whole-body vibration

  50. Walter A (2008) Regelung und Diagnose von Fahrzeug Antriebssträngen mit Zweimassenschwungrad. Karlsruher Institut für Technologie, Karlsruhe (Ph.d. thesis)

    Google Scholar 

  51. Canudas-de Wit C, Tsiotras P, Velenis E, Basset M, Gissinger G (2003) Dynamic friction models for road/tire longitudinal interaction. Veh Syst Dyn 39(3):189–226. https://doi.org/10.1076/vesd.39.3.189.14152

    Article  Google Scholar 

  52. Yeap KZ, Müller S (2016) Characterising the interaction of individual-wheel drives with traction by linear parameter-varying model: a method for analysing the role of traction in torsional vibrations in wheel drives and active damping. Veh Syst Dyn 54(2):258–280. https://doi.org/10.1080/00423114.2015.1131306

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to Florian Brunner for support in ECU-Bypass Coding, Sven Dannenberg for support in transmission control and Andreas Daasch and Dieter Schwarzmann for the provision of a test vehicle.

Funding

This research has been partly funded by IAV GmbH, Gifhorn, Germany

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Korbinian J. Figel.

Appendix

Appendix

 

Table 5 Parameter values of models A, B.1–3
Table 6 Parameter values of the models C.1, C.2, D.1 and D.2

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Figel, K.J., Schultalbers, M. & Svaricek, F. Review and experimental evaluation of models for drivability simulation with focus on tire modeling. Forsch Ingenieurwes 83, 105–118 (2019). https://doi.org/10.1007/s10010-019-00319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-019-00319-8