Skip to main content
Log in

Zeitoptimaler Mastaufbau einer mobilen Autobetonpumpe unter Nebenbedingungen

Time-optimal unfolding of a mobile truck-mounted concrete pump under constraints

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Zusammenfassung

Aufgrund der Möglichkeit mit nur einer Maschine Beton gezielt über weite Strecken zu befördern, sind auf Baustellen häufig mobile Autobetonpumpen im Einsatz. Der Mastaufbau dieser Großraummanipulatoren wird derzeit manuell von einem Maschinisten durchgeführt, der aufgrund der hohen Reichweiten und Sicherheitsabstände die Gelenke tendenziell sequenziell bedient. Wegen des geringen Platzangebots auf Baustellen können platzsparende Teilabstützungen verwendet werden, bei denen zur Gewährleistung der Standsicherheit derzeit fest vorgegebene und langsame Ausfaltphasen vom Maschinisten zu befolgen sind. Die manuelle Bedienung und die vorgegebenen Ausfaltphasen führen dazu, dass der Ausfaltvorgang des Masts aktuell ungefähr \(39\,\%\) der Aufbauphase einnimmt. Im vorliegenden Beitrag wird zur Reduzierung der Ausfaltzeit eine modellprädiktive Regelung für den automatisierten und zeitoptimalen Mastaufbau einer mobilen Autobetonpumpe unter den Nebenbedingungen der Standsicherheit, Volumenstrombeschränkungen und Vermeidung von Selbstkollisionen realisiert. Durch die Analyse simulierter Ausfaltvorgänge in verschiedene Zielkonfigurationen und den Vergleich zu manuellen Ausfaltungen werden der modellprädiktive Regler verifiziert und das zunächst theoretische Einsparpotential des automatisierten Mastaufbaus aufgezeigt.

Abstract

Mobile truck-mounted concrete pumps are designed to transport concrete over long distances efficiently and are therefore often deployed on construction sites. Currently, a worker manually controls the unfold procedure of these large scale manipulators using a sequential strategy because of the raising boom complexity and large safety margins. Due to the narrow space on construction sites, some trucks only allow the operator to use partial outrigger configurations. Hereby, to provide static stability the operator has to follow fixed and slow unfold sequences. The manual control and the fixed unfold sequences cause the unfold procedure currently to take approximately \(39\,\%\) of the whole start-up phase. This paper utilizes a model predictive control approach to realize an automated and time-optimal unfold procedure that satisfies constraints regarding self-collisions, static stability and oil volume flow restrictions. The model predictive controller is verified, and theoretical saving potentials regarding the unfold time are presented in an analysis consisting of simulated time-optimal unfold procedures for several goal configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16
Abb. 17
Abb. 18

Literatur

  1. Behzadipour S, Khajepour A (2006) Time-optimal trajectory planning in cable-based manipulators. IEEE Trans Robot 22:559–563

    Article  Google Scholar 

  2. Bellman R (1954) The theory of dynamic programming. Bull Am Math Soc 60:503–516

    Article  MathSciNet  MATH  Google Scholar 

  3. Biagiotti L, Melchiorri C (2008) Trajectory planning for automatic machines and robots. Springer, Berlin, Heidelberg

    Google Scholar 

  4. Bjorkenstam S, Gleeson D, Bohlin R, Carlson JS, Lennartson B (2013) Energy efficient and collision free motion of industrial robots using optimal control. In: 2013 IEEE international conference on automation science and engineering (CASE), S 510–515

    Chapter  Google Scholar 

  5. Bobrow JE, Dubowsky S, Gibson JS (1985) Time-optimal control of robotic manipulators along specified paths. Int J Rob Res 3(4):3–17

    Article  Google Scholar 

  6. Buschmann A (1999) Komponenten der globalen Bahnplanung für Schwerlasthandhabungssysteme. Fortschritt-Berichte VDI : Reihe 8, Meß‑, Steuerungs- und Regelungstechnik, vol. 785. VDI-Verl, Düsseldorf

    Google Scholar 

  7. Carbone G, Gomez-Barvo F (2015) Motion and operation planning of robotic systems. Mechanisms and machine science, Bd. 29. Springer, Berlin, Heidelberg

    Google Scholar 

  8. Chen H, Fang Y, Sun N (2016) Optimal trajectory planning and tracking control method for overhead cranes. IET Control Theory Appl 10:692–699

    Article  MathSciNet  Google Scholar 

  9. Chen Y, Huang J (1996) An improved computation of time-optimal control trajectory for robotic point-to-point motion. Int J Control 65:177–194

    Article  MathSciNet  MATH  Google Scholar 

  10. Choset HM (2005) Principles of robot motion. Intelligent robotics and autonomous agents. MIT Press, ​Cambridge, Mass.

    Google Scholar 

  11. Denavit J, Hartenberg RS (1965) A kinematic notation for lower-pair mechanisms based on matrices. ASME, New York

    MATH  Google Scholar 

  12. Diehl M, Bock HG, Diedam H, Wieber PB (2006) Fast direct multiple shooting algorithms for optimal robot control. In: Diehl M (Hrsg) Fast motions in biomechanics and robotics, Bd. 340. Springer, Berlin, Heidelberg, S 65–93

    Chapter  Google Scholar 

  13. Farkas J (1902) Theorie der einfachen Ungleichungen. J Reine Angew Math 124:1–27

    MathSciNet  MATH  Google Scholar 

  14. Galicki M (2000) Time-optimal controls of kinematically redundant manipulators with geometric constraints. IEEE Trans Robot Autom 16:89–93

    Article  Google Scholar 

  15. Grüne L, Pannek J (2011) Nonlinear model predictive control. Communications and control engineering. Springer,​ London

    MATH  Google Scholar 

  16. Henikl J, Kemmetmüller W, Bader M, Kugi A (2014) Modelling, simulation and identification of a mobile concrete pump. Math Comput Model Dyn Syst 21:180–201

    Article  MATH  Google Scholar 

  17. Henikl J, Kemmetmüller W, Meurer T, Kugi A (2016) Infinite-dimensional decentralized damping control of large-scale manipulators with hydraulic actuation. Automatica (Oxf) 63:101–115

    Article  MathSciNet  MATH  Google Scholar 

  18. Computational Mathematics Group (2017) HSL: A collection of fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/. Zugegriffen: 9. Juni 2017

  19. Komainda A (2003) Methoden und Verfahren zur Online-Bahnplanung redundanter Schwerlastmanipulatoren. Fortschritt-Berichte VDI Reihe 8, Meß‑, Steuerungs- und Regelungstechnik, vol. 993. VDI-Verl, Düsseldorf

    Google Scholar 

  20. Krämer M, Rösmann C, John FI, Bertram T (2017) Zeitoptimale Regelung des Mastaufbaus einer Autobetonpumpe unter statischen, kinodynamischen und geometrischen Nebenbedingungen. In: Dritte IFToMM D‑A-CH Konferenz 2017. Universität Duisburg-Essen, Duisburg, Essen

    Google Scholar 

  21. Lalo W, Brandt T, Schramm D, Hiller M (2008) A linear optimization approach to inverse kinematics of redundant robots with respect to manipulability. In: The 25th international symposium on automation and robotics in construction (ISARC), S 175–180

    Google Scholar 

  22. Lalo W, Schramm D, Woernle C (2014) Ein Beitrag zur Entwicklung von Assistenzsystemen für serielle und parallele Roboter am Beispiel von Autobetonpumpen und seilbasierten Regalbediengeräten. Universitätsbibliothek Duisburg-Essen, Duisburg, Essen

    Google Scholar 

  23. Landry C, Hömberg D, Henrion R, Gerdts M (2012) Path planning and collision avoidance for robots. Numer Algebra Control Opt 2:437–463

    Article  MathSciNet  MATH  Google Scholar 

  24. LaValle SM (2006) Planning algorithms. Cambridge University Press,​ Cambridge

    Book  MATH  Google Scholar 

  25. Lee EB, Markus L (1967) Foundations of optimal control theory. The SIAM series in applied mathematics. Wiley, New York

    Google Scholar 

  26. Meales Group (2017) The future of concrete pumping. http://www.meales.com.au/. Zugegriffen: 12. Juni 2017

    Google Scholar 

  27. Nabulsi S, Rodriguez A, Rio O (2010) Robotic machine for high-quality shotcreting process. In: IEEE german conference on robotics

    Google Scholar 

  28. Nocedal J, Wright SJ (2006) Numerical optimization, 2. Aufl. Springer series in operations research and financial engineering. Springer, New York

    MATH  Google Scholar 

  29. Rey DA, Papadoupoulos EG (1997) Online automatic tipover prevention for mobile manipulators. In: 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovative Robotics for Real-World Applications. IROS 1997, S 1273–1278

    Google Scholar 

  30. Rösmann C, Feiten W, Woesch T, Hoffmann F, Bertram T (2012) Trajectory modification considering dynamic constraints of autonomous robots. In: ROBOTIK 2012; 7th German Conference on Robotics, S 1–6

    Google Scholar 

  31. Rösmann C, Hoffmann F, Bertram T (2015) Timed-elastic-bands for time-optimal point-to-point nonlinear model predictive control. In: 2015 european control conference (ECC), S 3352–3357

    Chapter  Google Scholar 

  32. Schlemmer M (2000) Eine SQP-Rückwärtskinematik zur interaktiven, semi-autonomen Bahnführung kinematisch redundanter Manipulatoren. Fortschritt-Berichte VDI Reihe 8, Meß‑, Steuerungs- und Regelungstechnik, vol. 825. VDI, Düsseldorf

    Google Scholar 

  33. Siciliano B (2010) Robotics. Advanced textbooks in control and signal processing. Springer, London

    Google Scholar 

  34. van den Broeck L, Diehl M, Swevers J (2011) A model predictive control approach for time optimal point-to-point motion control. Mechatronics (Oxf) 21:1203–1212

    Article  Google Scholar 

  35. Verscheure D, Demeulenaere B, Swevers J, de Schutter J, Diehl M (2009) Time-optimal path tracking for robots. IEEE Trans Autom Control 54:2318–2327

    Article  MATH  Google Scholar 

  36. Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106:25–57

    Article  MathSciNet  MATH  Google Scholar 

  37. Wanner MC (1995) The aircraft washing system skywash. Adv Robot 10:415–423

    Article  Google Scholar 

  38. Wilson J, Charest M, Dubay R (2016) Non-linear model predictive control schemes with application on a 2 link vertical robot manipulator. Robot Comput Integr Manuf 41:23–30

    Article  Google Scholar 

  39. Zhao J, Diehl M, Longman R, Bock HG, Schloeder J (2004) Nonlinear model predictive control of robots using real-time optimization. In: AIAA/AAS astrodynamics specialist conference and exhibit

    Google Scholar 

  40. Zhou SW, Guo LX, Zhang SQ (2008) Study on automatic spray of distribution boom system of truck-mounted concrete pump. Open Mech Eng J 2:84–92

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Krämer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krämer, M., Rösmann, C., John, F.I. et al. Zeitoptimaler Mastaufbau einer mobilen Autobetonpumpe unter Nebenbedingungen. Forsch Ingenieurwes 82, 45–57 (2018). https://doi.org/10.1007/s10010-017-0258-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-017-0258-5

Navigation