Skip to main content
Log in

Improved calculation method for load-dependent gear losses

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

The topic of this study is to investigate the load-dependent losses of practical spur gears, for which the existing calculation method is analyzed in detail and improved.

In drive technology, spur gears are frequently used for the transformation of torque and speed. Power transmission always involves power losses. Thereby, particular interest has to be given to the load-dependent gear loss as it often accounts for a large share of the total loss.

According to the state of the art, the calculation of load-dependent gear loss is mainly based on (i) gear loss factors derived from simplified load distributions and (ii) a mean coefficient of friction derived from empirical equations based on spur gears without flank modifications. In practice, however, helical gears for improved NVH (Noise-Vibration-Harshness) behavior and flank modifications for uniform contact patterns are used. The modified mesh and contact conditions of modified helical gears affect the load-dependent gear losses significantly. Hence, significant deviations compared to the state of the art can occur.

Comprehensive experimental investigations at the FZG efficiency test rig and FZG Bearing power loss test rig have been carried out to investigate the load-dependent gear losses of modified helical gears. The results are used to improve an existing calculation method that distinguishes between geometrical and tribological influence factors. Thereby, the local mesh and contact conditions along the plane of action are considered by the gear loss factor HVL according to Wimmer, whereas the calculation of the mean coefficient of friction µmz has been enhanced by regression analyses. A comparison of the improved calculation method to the state of the art shows improved accuracy for determining the load-dependent gear losses and hence the efficiency of gear boxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Subscript “686” according to number of the FVA-Research Project: FVA-No. 686/I.

References

  1. Bair S, Winer WO (1979) A rheological model for elastohydrodynamic contacts based on primary laboratory data. ASME J Lubr Technol 101:258–265

    Article  Google Scholar 

  2. Diab Y, Ville F, Velex P (2006) Prediction of power losses due to tooth friction in gears. Tribol Trans 49(2):260–270

    Article  Google Scholar 

  3. Doleschel A (2002) Wirkungsgradberechnung von Zahnradgetrieben in Abhängigkeit vom Schmierstoff. Dissertation, Technical University of Munich

  4. Doleschel A, Michaelis K, Höhn B‑R (2009) Lubricant influence on gear efficiency. Proc. of the ASME Int. Design Engineering Techn. Conf., San Diego.

    Google Scholar 

  5. Ertel-Mohrenstein A (1984) Die Berechnung der hydrodynamischen Schmierung gekrümmter Oberflächen unter hoher Belastung und Relativbewegung. VDI Fortschrittsbericht, Reihe 1, vol. 115.

    Google Scholar 

  6. Eyring H (1936) Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J Chem Phys 4(4):283–291

    Article  Google Scholar 

  7. Fernandes CMCG, Marques P, Martins R, Seabra J (2015) Gearbox power loss. Part II: friction losses in gears. Tribol Int. doi:10.1016/j.triboint.2014.12.004

    Google Scholar 

  8. Grubin AN, Vinogradova JE (1949) Investigation of Contact Maschine Components. Cent. Sci. Res. Tech. Mech. Eng, Moskau. (Book No. 30)

    Google Scholar 

  9. Hepermann P, Beilicke R, Bartel D, Tenberge P, Deters L (2012) FVA-Nr. 598/I – Heft 1024 – Örtliche Fresstragfähigkeit. Forschungsvereinigung Antriebstechnik e. V., Frankfurt am Main

    Google Scholar 

  10. Hinterstoißer M (2013) Zur Optimierung des Wirkungsgrades von Stirnradgetrieben. Dissertation, Technical University of Munich

  11. ISO 14635-1, 2000-06 (2000) FZG test method A/8.3/90 for relative scuffing load-carrying capacity of oils.

  12. Jurkschat T, Otto M, Stahl K (2015) FVA – Nr. 364/IV – Heft 1145 – Erweiterung von LAGER2 zur Dimensionierung von Wälzlagern in Industriegetrieben: Verlustleistung und Betriebstemperatur. Forschungsvereinigung Antriebstechnik e. V., Frankfurt am Main

    Google Scholar 

  13. Jurkschat T, Lohner T, Stemplinger J‑P, Stahl K (2017) IGF Nr. 17151 N1, FVA-Nr. 686 – Verlustleistung von Stirnradverzahnungen. Forschungsvereinigung Antriebstechnik e. V., Frankfurt am Main

    Google Scholar 

  14. Lohner T, Mayer J, Michaelis K, Höhn B‑R, Stahl K (2017) On the running – in behavior of lubricated line contacts. J Eng Tribol 231(4):441–452. doi:10.1177/1350650115574869

    Google Scholar 

  15. Mayer J (2013) Einfluss der Oberfläche und des Schmierstoffs auf das Reibungsverhalten im EHD-Kontakt. Dissertation, Technical University of Munich

  16. Ohlendorf H (1958) Verlustleistung und Erwärmung von Stirnrädern. Dissertation, Technical University of Munich

  17. Schlenk L (1995) Untersuchungen zur Freßtragfähigkeit von Großzahnrädern. Dissertation, Technical University of Munich

  18. Sheng L, Vaidyanathan A, Harianto J, Kahraman A (2009) Influence of design parameters on mechanical power losses of helical gear pairs. J Adv Mech Des Syst Manuf 3(2):146–158

    Article  Google Scholar 

  19. SKF (1994) Hauptkatalog: Katalog 4000/IV T. Schweinfurt

  20. Stiller S, Otto M, Stahl K (2014) FVA-Nr. 30VII – Heft 1077 – RIKOR J. Erweiterung Ritzelkorrekturprogramm (RIKOR) zur Bestimmung der Lastverteilung von Stirnradgetrieben. Forschungsvereinigung Antriebstechnik e. V., Frankfurt am Main

    Google Scholar 

  21. Velex P, Ville F (2009) An analytical approach to tooth friction losses in spur and helical gears-influence of profile modifications. J Mech Des. doi:10.1115/1.3179156 (Transactions of the ASME)

    Google Scholar 

  22. Wimmer A (2006) Lastverluste von Stirnradverzahnungen. Dissertation, Technical University of Munich

  23. Ziegltrum A, Lohner T, Stahl K (2016) TEHL simulation on the influence of lubricants on load-dependent gear losses. Tribol Int. doi:10.1016/j.triboint.2016.12.018

    Google Scholar 

Download references

Acknowledgements

The presented work was sponsored by the “Arbeitsgemeinschaft industrieller Forschungsvereinigung e. V. (AiF)”, with funding from the “Bundesministerium für Wirtschaft (BMWi, IGF no. 17151 N/1)” and with an equity ratio from the “Forschungsvereinigung Antriebstechnik e. V. (FVA)”. The results shown in this work were taken from results of the research project FVA 686/I. More detailed information is provided in the final report. Special gratitude is owed to the active members of the attendant working team for the joint research work.

figure a

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jurkschat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurkschat, T., Lohner, T. & Stahl, K. Improved calculation method for load-dependent gear losses. Forsch Ingenieurwes 81, 109–115 (2017). https://doi.org/10.1007/s10010-017-0231-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-017-0231-3

Navigation