Skip to main content
Log in

Efficiency analysis of multi-speed automatic transmission with planetary gear trains

Effizienzanalyse des Mehrgangautomatikgetriebes mit Planetengetriebe

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

An approach to analyze the power flow and efficiency of multi-speed automatic transmission is proposed. The kinematic and torque equations in each shift are established based on three types of relations in hypergraphs. Load dependent/load independent power losses of each component and idle power losses caused by idle components are taken into consideration. The efficiencies of each component and the whole system are predicted by following the power flow in different shifts. The method presented is suitable for computer programming and beneficial for accurate efficiency calculation. A nine-speed automatic transmission is taken as an example to highlight the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Schlegel C, Hosl A, Diel S (2009) Detailed loss modelling of vehicle gearboxes. Proceedings 7th Modelica Conference, Como, 20–22 September 2009. Linköping University Electronic Press, Italy

    Book  Google Scholar 

  2. Esmail EL (2013) Nomographs for synthesis of epicyclic-type automatic transmissions. Meccanica 48:2037–2049

    Article  MATH  Google Scholar 

  3. Hsieh HI, Tsai LW (1996) Kinematic analysis of epicyclic-type transmission mechanisms using the concept of fundamental kinematic entities. J Mech Des N Y 118:294–299

    Article  Google Scholar 

  4. Olson DG, Erdman AG, Riley DR (1991) Topological analysis of single-degree-of-freedom planetary gear trains. J Mech Des N Y 113:10–16

    Article  Google Scholar 

  5. Hsu CH, Wu YC (1997) Automatic detection of embedded structure in planetary gear trains. J Mech Des N Y 119:315–318

    Article  Google Scholar 

  6. Liu CP, Chen DZ (2001) On the application of kinematic units to the topological analysis of geared mechanisms. J Mech Des N Y 123:240–246

    Article  Google Scholar 

  7. Chen C (2013) Power flow and efficiency analysis of epicyclic gear transmission with split power. Mech Mach Theory 59:96–106

    Article  Google Scholar 

  8. Stangl M (2007) Methodik zur kinematischen und kinetischen Berechnung mehrwelliger Planeten-Koppelgetriebe. Thesis Technische Universität München

  9. del Castillo JM (2002) Enumeration of 1‑DOF planetary gear train graphs based on functional constraints. J Mech Des N Y 124:723–732

    Article  Google Scholar 

  10. Goma Ayats JR, Diego-Ayala U, Minguella Canela J, Fenollosa F, Vivancos J (2012) Hypergraphs for the analysis of complex mechanisms comprising planetary gear trains and other variable or fixed transmissions. Mech Mach Theory 51:217–229

    Article  Google Scholar 

  11. Del Castillo JM (2002) The analytical expression of the efficiency of planetary gear trains. Mech Mach Theory 37:197–214

    Article  MATH  Google Scholar 

  12. Salgado DR, del Castillo JM (2014) Analysis of the transmission ratio and efficiency ranges of the four-, five-, and six-link planetary gear trains. Mech Mach Theory 73:218–243

    Article  Google Scholar 

  13. Csoban A, Kozma M (2010) Influence of the oil churning, the bearing and the tooth friction losses on the efficiency of planetary gears. J Mech Eng 56(4):231–238

    Google Scholar 

  14. Chen C, Angeles J (2007) Virtual-power flow and mechanical gear-mesh power losses of epicyclic gear trains. J Mech Des N Y 129(1):107–113

    Article  Google Scholar 

  15. Chen C (2013) Power flow and efficiency analysis of epicyclic gear transmission with split power. Mech Mach Theory 59:96–106

    Article  Google Scholar 

  16. Dan C, Tejinder S (2014) Multi-speed planetary gear set transmission, US 8915819B2

    Google Scholar 

  17. Willis R (1841) Principles of mechanism. Parker, London

    Google Scholar 

  18. Kurth F (2012) Efficiency Determination and Synthesis of Complex-Compound Planetary Gear Transmissions. Technische Universität München

  19. Niemann G, Winter H (2003) Getriebe allgemein, Zahnradgetriebe – Grundlagen, Stirnradgetriebe. Maschinenelemente, vol. 2. Springer, Berlin

    Google Scholar 

  20. Estimating the frictional moment, Power loss and bearing temperature, SKF Knowledge Center

  21. Bones R (1989) Churning losses of discs and gears running partially submerged in oil. Proceedings ASME International Power Transmission Gearing Conference, Chicago.

    Google Scholar 

  22. Changenet C, Velex P (2007) A model for the prediction of churning losses in geared transmissions – preliminary results. J Mech Des N Y 129(1):128. doi:10.1115/1.2403727

    Article  Google Scholar 

  23. Csoban A, Kozma M (2010) Influence of the oil churning, the bearing and the tooth friction losses on the efficiency of planetary gears. J Mech Eng 56(4):231–238

    Google Scholar 

  24. Zhang Zhigang, Zhou Xiaojun, Li Yongjun, Shen Lu, Fuchun Yang (2011) Drag torque prediction model of wet multi-disc shifting clutch. J Zhejiang Univ Sci A 45(4):708–713

    Google Scholar 

  25. Kettler J (2002) Planetengetriebe-Sumpftemperatur, FVA-Forschungsvorhaben Nr. 313, Heft 639, Forschungsbericht

    Google Scholar 

Download references

Acknowledgement

This paper was supported by National Natural Science Foundation of China (No.51305233) and Young Scholars Program of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuchun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Wang, Y. Efficiency analysis of multi-speed automatic transmission with planetary gear trains. Forsch Ingenieurwes 81, 163–173 (2017). https://doi.org/10.1007/s10010-017-0217-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-017-0217-1

Navigation