Abstract
A classification representing some main branches of non-equilibrium thermodynamics is discussed. Differences and similarities of these selected branches are explained. Starting out with basic concepts of phenomenological thermodynamics, more developed theories with different back-grounds contributing to contemporary thermodynamics are considered. Because of its size, this field cannot be presented completly without any omissions.
This is a preview of subscription content, access via your institution.
References
Hiersig HM (Hrsg.) (1995) Lexikon Ingenieurwissen Grundlagen. VDI Verlag, Düsseldorf
Muschik W (1981) Thermodynamical theories, survey and comparison. ZAMM 61 T213–T219
Kestin J (1979) A Course in Thermodynamics, Vol I. Hemisphere, Washington
Muschik W, Domínguez-Cascante R (1996) On extended thermodynamics of discrete systems. Physica A 233:523–550
Muschik W, Berezovski A (2004) Thermodynamic interaction between two discrete systems in non-equilibrium. J Non-Equil Thermodyn 29:237–255
Muschik W, Papenfuss C, Ehrentraut H (2001) A sketch of continuum thermodynamics. J Non-Newtonian Fluid Mech 96:255–290
Muschik W (2004) Remarks on thermodynamical terminology. J Non-Equil Thermodyn 29:199–203
de Groot SR, Mazur P (1963) Non-Equilibrium Thermodynamics. North-Holland, Amsterdam
Truesdell C, Noll W (1965) Non-Linear Field Theories of Mechanics. In: Flügge S (Ed), Encyclopedia of Physics, III/3, Springer, Berlin
Jou D, Casas-Vázquez J, Lebon G (1993) Extended Irreversible Thermodynamics. Springer, Berlin
Müller I, Ruggeri T (1993) Extended Thermodynamics. Springer, Berlin
Hoffmann KH, Burzler JM, Schubert S (1997) Endoreversible thermodynamics. J Non-Equil Thermodyn 22:311–355
Gemmer J, Michel M, Mahler G (2004) Quantum Thermodynamics. Springer, Berlin
Muschik W, Ehrentraut H, Papenfuss C (1999) Mesoscopic continuum mechanics. In: Maugin G (Ed): Geometry, Continua and Microstructure, Collection Travaux en Cours 60, Herrman, Paris pp. 49–60
Öttinger HC (2005) Beyond Equilibrium Thermodynamics. Wiley, Hoboken
Muschik W, Trostel R (1983) Variational principles in thermodynamics (Survey). ZAMM 63 T190–T192
Ván P, Muschik W (1995) Structure of variational principles in nonequilibrium thermodynamics. Phys Rev E 52:3584–3590
Sieniutycz S, Farkas H (Eds) (2005) Variational and Extremum Principles in Macroscopic Systems. Elsevier, Oxford
Edsall JT, Gutfreund H (1983) Biothermodynamics. Wiley, New York
Haynie DT (2001) Biological Thermodynamics. Cambridge University Press, Cambridge
Keller JU, An outlook on biothermodynamics, Needs, problems and new developments. J Non-Equil Thermodyn, in preparation
Bejan A (1982) Entropy Generation through Heat and Fluid Flow. Wiley, New York
Andresen B, Finite-time thermodynamics. In: Sieniutycz S, Salamon P (Eds) (1990) Finite-Time Thermodynamics and Thermoeconomics, Advances in Thermodynamics 4. Taylor and Francis, New York pp 66
Šilhavý M (1997) The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin
Muschik W, Papenfuss C, Ehrentraut H (1996) Concepts of Continuum Thermodynamics. Kielce University of Technology, Technische Universität Berlin
Muschik W (1988) Formulations of the second law – Recent developments. J Phys Chem Solids 49:709–720
Muschik W, Ehrentraut H, Papenfuss C (2000) Concepts of mesoscopic continuum physics. J Non-Equil Thermodyn 25:179–197
Muschik W, Papenfuss C, Ehrentraut H (2004) Mesoscopic theory of liquid crystals. J Non-Equil Thermodyn 29:75–106
Schottky W (1929) Thermodynamik. Springer, Berlin
Muschik W, Fundamentals of nonequilibrium thermodynamics. In: Muschik W (Ed) (1993) Non-Equilibrium Thermodynamics with Application to Solids. Springer, Wien
Muschik W (1977) Empirical foundation and axiomatic treatment of non-equilibrium temperature. Arch Rat Mech Anal 66:379–401
Muschik W, Brunk G (1977) A concept of non-equilibrium temperature. Int J Eng Sci 15:377–389
Muschik W (1990) Aspects of Non-Equilibrium Thermodynamics. World Scientific, Singapore
Muschik W, Ehrentraut H, Papenfuss C (2000) Concepts of mesoscopic continuum physics with application to biaxial liquid crystals. J Non-Equil Thermodyn 25:179–197
Truesdell C, Noll W (1965) Non-Linear Field Theories of Mechanics. In: Flügge S (Ed), Encyclopedia of Physics, III/3, Sect.19, Springer, Berlin
Svendsen B, Bertram A (1999) On frame-indifference and form-invariance in constitutive theory. Acta Mech 132:195–207
Muschik W, Restuccia L (2002) Changing the observer and moving materials in continuum physics: Objectivity and frame indifference. Tech Mech 22:152–160
Bertram A, Svendsen B (2001) On material objectivity and reduced constitutive equations. Arch Mech 53:653–675
Hutter K (1977) The foundations of thermodynamics, its basic postulates and implications. Acta Mech 27:1–54
Muschik W (1983) Extended formulation of the second law for open discrete systems. J Non-Equil Thermodyn 8:219–228
Meixner J (1969) Thermodynamik der Vorgänge in einfachen fluiden Medien und die Charakterisierung der Thermodynamik der irreversiblen Prozesse. Z Phys 219:79–104
Day WA (1972) The Thermodynamics of Simple Materials with Fading Memory. Springer Tracts in Natural Philosophy. Vol. 22, Berlin
Coleman BD, Owen DR (1974) A mathematical foundation of thermodynamics. Arch Rat Mech Anal 54:1–104
Gurtin ME, Williams W (1967) An axiomatic foundation for continuum thermodynamics. Arch Rat Mech Anal 26:83–117
Muschik W (1977) A phenomenological foundation of non-linear O-C-reciprocity relations. J Non-Equil Thermodyn 2:109–124
Truesdell C (1969) Rational Thermodynamics. Lect.7, McGraw-Hill, New York
Lebon G (1984) An approach to extended irreversible thermodynamics. In: Casas-Vázquez J, Jou D, Lebon G (Eds), Recent Developments in Nonequilibrium Thermodynamics, Lecture Notes in Physics 199. Springer, Berlin, pp. 72–104
Coleman BD, Mizel VJ (1964) Existence of caloric equations of state in thermodynamics. J Chem Phys 40:116–1125
Muschik W, Ehrentraut H (1996) An amendment to the second law. J Non-Equil Thermodyn 21:175–192
Maugin GA (1999) The Thermomechanics of Nonlinear Irreversible Behaviors. An Introduction. World Scientific, Singapore, ISBN 981-02-3375-2, Sect.3.3.B
Liu IS (1972) Method of Lagrange multipliers for exploitation of the entropy principle. Arch Rat Mech Anal 46:131–148
Novikov II (1958) The efficiency of atomic power stations. J Nucl Energ II 7:125–128 translated from Atomnaya Energiya 3:409 (1957)
Curzon FL, Ahlborn B (1975) Efficiency of a Carnot engine at maximum power output. Am J Phys 43:22–24
Hoffmann KH, Burzler J, Fischer A, Schaller M, Schubert S (2003) Optimal process paths for endoreversible systems. J Non-Equil Thermodyn 28:233–268
Muschik W, Hoffmann KH (2006) Endoreversible thermodynamics: A tool for simulating and comparing processes of discrete systems. J Non-Equil Thermodyn 31:293–317
Blenk S, Muschik W (1991) Orientational balances for nematic liquid crystals. J Non-Equil Thermodyn 16:67–87
Blenk S, Ehrentraut H, Muschik W (1991) Statistical foundation of macroscopic balances for liquid crystals in alignment tensor formulation. Physica A 174:119–138
Ehrentraut H, Muschik W, Papenfuss C (1997) Mesoscopically derived orientation dynamics of liquid crystals. J Non-Equil Thermodyn 22:285–298
Blenk S, Ehrentraut H, Muschik W (1992) Macroscopic constitutive equations for liquid crystals induced by their mesoscopic orientation distribution. Int J Eng Sci 30:1127–1143
Muschik W, Su B (1997) Mesoscopic interpretation of Fokker–Planck equation describing time behavior of liquid crystal orientation. J Chem Phys 107:580–584
Papenfuss C, Ván P, Muschik W (2003) Mesoscopic theory of microcracks. Arch Mech 55:481–499
Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids, development of a GENERIC formalism. Phys Rev E 56:6620–6632
Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids, illustrations of the GENERIC formalism. Rev E 56:6633–6655
Grmela M, Jou D, Casas-Vázquez J (1998) Nonlinear and Hamiltonian extended and irreversible thermodynamics. J Chem Phys 108:7937–7945
Öttinger HC (1998) General projection operator formalism for the dynamics and thermodynamics of complex fluids. Phys Rev E 57:1416–1420
Muschik W, Gümbel S, Kröger M, Öttinger HC (2000) A simple example for comparing GENERIC with rational non-equilibrium thermodynamics. Physica A 285:448–466
Glansdorff P, Prigogine I (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, London, ch. IX, sec.8
Glansdorff P, Prigogine I (1954) Sur les propriétés différentielle de la production d’entropie. Physica 20:773–780
Gyarmati I (1970) Non-Equilibrium Thermodynamics, Engineering Science Library. Springer, Berlin, ch. V.1.
Glansdorff P, Prigogine I (1964) On a general evolution criterion in macroscopic physics. Physica 30:351–374
Glansdorff P, Nicolis G, Prigogine I (1974) The thermodynamic stability theory of non-equilibrium states. Proc Nat Acad Sci USA 71:197–199
Muschik W, Papenfuss C (1993) An evolution criterion of nonequilibrium thermodynamics and its application to liquid crystals. Physica A 201:515–526
Papenfuss C, Muschik W (1997) Evolution criterion in nonequilibrium and a variational principle for equilibrium states of free-standing liquid crystalline films. Phys Rev E 56:4275–4281
Radzikowska E, Kotowski R, Muschik W (2001) A nonequilibrium evolution criterion for electromagnetic bodies. J Non-Equil Thermodyn 26:215–230
Toda M, Kubo R, Saito N (1978) Statistical Physics I: Equilibrium Statistical Mechanics. Springer, Berlin
Beretta GP, On the general equation of motion of quantum thermodynamics and the distinction between quantal and nonquantal uncertainties. arXiv:quant-ph/0509116v1 17Sep2005
Muschik W, Kaufmann M (1994) Quantum-thermodynamical description of discrete non-equilibrium systems. J Non-Equil Thermodyn 19:76–94
Jaynes ET (1957) Information theory and statistical mechanics I, II. Phys Rev 106:620–630, 108:171–190
Schwegler H (1965) Verallgemeinerte physikalische Entropien auf informationstheoretischer Grundlage. Z Naturforsch 20a:1543–1553
Martinas K, Frankowicz M (2001) Extropy. Periodica Polytechnica Ser Chem Eng 44:29–38
Kato A, Kaufmann M, Muschik W, Schirrmeister D (2000) Different dynamics and entropy rates in quantum-thermodynamics. J Non-Equil Thermodyn 25:63–86
Robertson B (1966) Equations of motion in nonequilibrium statistical mechanics. Phys Rev 144:151–161
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Muschik, W. Why so many “schools” of thermodynamics? . Forsch Ingenieurwes 71, 149–161 (2007). https://doi.org/10.1007/s10010-007-0053-9
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10010-007-0053-9
Keywords
- State Space
- Entropy Production
- Density Operator
- Discrete System
- Irreversible Thermodynamic