Skip to main content

Why so many “schools” of thermodynamics?

Abstract

A classification representing some main branches of non-equilibrium thermodynamics is discussed. Differences and similarities of these selected branches are explained. Starting out with basic concepts of phenomenological thermodynamics, more developed theories with different back-grounds contributing to contemporary thermodynamics are considered. Because of its size, this field cannot be presented completly without any omissions.

This is a preview of subscription content, access via your institution.

References

  1. Hiersig HM (Hrsg.) (1995) Lexikon Ingenieurwissen Grundlagen. VDI Verlag, Düsseldorf

    Google Scholar 

  2. Muschik W (1981) Thermodynamical theories, survey and comparison. ZAMM 61 T213–T219

  3. Kestin J (1979) A Course in Thermodynamics, Vol I. Hemisphere, Washington

    Google Scholar 

  4. Muschik W, Domínguez-Cascante R (1996) On extended thermodynamics of discrete systems. Physica A 233:523–550

    Article  Google Scholar 

  5. Muschik W, Berezovski A (2004) Thermodynamic interaction between two discrete systems in non-equilibrium. J Non-Equil Thermodyn 29:237–255

    Article  MATH  Google Scholar 

  6. Muschik W, Papenfuss C, Ehrentraut H (2001) A sketch of continuum thermodynamics. J Non-Newtonian Fluid Mech 96:255–290

    Article  MATH  Google Scholar 

  7. Muschik W (2004) Remarks on thermodynamical terminology. J Non-Equil Thermodyn 29:199–203

    Article  MATH  Google Scholar 

  8. de Groot SR, Mazur P (1963) Non-Equilibrium Thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  9. Truesdell C, Noll W (1965) Non-Linear Field Theories of Mechanics. In: Flügge S (Ed), Encyclopedia of Physics, III/3, Springer, Berlin

  10. Jou D, Casas-Vázquez J, Lebon G (1993) Extended Irreversible Thermodynamics. Springer, Berlin

    MATH  Google Scholar 

  11. Müller I, Ruggeri T (1993) Extended Thermodynamics. Springer, Berlin

    MATH  Google Scholar 

  12. Hoffmann KH, Burzler JM, Schubert S (1997) Endoreversible thermodynamics. J Non-Equil Thermodyn 22:311–355

    Google Scholar 

  13. Gemmer J, Michel M, Mahler G (2004) Quantum Thermodynamics. Springer, Berlin

    MATH  Google Scholar 

  14. Muschik W, Ehrentraut H, Papenfuss C (1999) Mesoscopic continuum mechanics. In: Maugin G (Ed): Geometry, Continua and Microstructure, Collection Travaux en Cours 60, Herrman, Paris pp. 49–60

  15. Öttinger HC (2005) Beyond Equilibrium Thermodynamics. Wiley, Hoboken

    Google Scholar 

  16. Muschik W, Trostel R (1983) Variational principles in thermodynamics (Survey). ZAMM 63 T190–T192

  17. Ván P, Muschik W (1995) Structure of variational principles in nonequilibrium thermodynamics. Phys Rev E 52:3584–3590

    Article  Google Scholar 

  18. Sieniutycz S, Farkas H (Eds) (2005) Variational and Extremum Principles in Macroscopic Systems. Elsevier, Oxford

    Google Scholar 

  19. Edsall JT, Gutfreund H (1983) Biothermodynamics. Wiley, New York

    Google Scholar 

  20. Haynie DT (2001) Biological Thermodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  21. Keller JU, An outlook on biothermodynamics, Needs, problems and new developments. J Non-Equil Thermodyn, in preparation

  22. Bejan A (1982) Entropy Generation through Heat and Fluid Flow. Wiley, New York

    Google Scholar 

  23. Andresen B, Finite-time thermodynamics. In: Sieniutycz S, Salamon P (Eds) (1990) Finite-Time Thermodynamics and Thermoeconomics, Advances in Thermodynamics 4. Taylor and Francis, New York pp 66

  24. Šilhavý M (1997) The Mechanics and Thermodynamics of Continuous Media. Springer, Berlin

    MATH  Google Scholar 

  25. Muschik W, Papenfuss C, Ehrentraut H (1996) Concepts of Continuum Thermodynamics. Kielce University of Technology, Technische Universität Berlin

  26. Muschik W (1988) Formulations of the second law – Recent developments. J Phys Chem Solids 49:709–720

    Article  Google Scholar 

  27. Muschik W, Ehrentraut H, Papenfuss C (2000) Concepts of mesoscopic continuum physics. J Non-Equil Thermodyn 25:179–197

    Article  MATH  Google Scholar 

  28. Muschik W, Papenfuss C, Ehrentraut H (2004) Mesoscopic theory of liquid crystals. J Non-Equil Thermodyn 29:75–106

    Article  MATH  Google Scholar 

  29. Schottky W (1929) Thermodynamik. Springer, Berlin

    MATH  Google Scholar 

  30. Muschik W, Fundamentals of nonequilibrium thermodynamics. In: Muschik W (Ed) (1993) Non-Equilibrium Thermodynamics with Application to Solids. Springer, Wien

    Google Scholar 

  31. Muschik W (1977) Empirical foundation and axiomatic treatment of non-equilibrium temperature. Arch Rat Mech Anal 66:379–401

    Article  MathSciNet  Google Scholar 

  32. Muschik W, Brunk G (1977) A concept of non-equilibrium temperature. Int J Eng Sci 15:377–389

    Article  MathSciNet  Google Scholar 

  33. Muschik W (1990) Aspects of Non-Equilibrium Thermodynamics. World Scientific, Singapore

    Google Scholar 

  34. Muschik W, Ehrentraut H, Papenfuss C (2000) Concepts of mesoscopic continuum physics with application to biaxial liquid crystals. J Non-Equil Thermodyn 25:179–197

    Article  MATH  Google Scholar 

  35. Truesdell C, Noll W (1965) Non-Linear Field Theories of Mechanics. In: Flügge S (Ed), Encyclopedia of Physics, III/3, Sect.19, Springer, Berlin

  36. Svendsen B, Bertram A (1999) On frame-indifference and form-invariance in constitutive theory. Acta Mech 132:195–207

    Article  MathSciNet  Google Scholar 

  37. Muschik W, Restuccia L (2002) Changing the observer and moving materials in continuum physics: Objectivity and frame indifference. Tech Mech 22:152–160

    Google Scholar 

  38. Bertram A, Svendsen B (2001) On material objectivity and reduced constitutive equations. Arch Mech 53:653–675

    MATH  MathSciNet  Google Scholar 

  39. Hutter K (1977) The foundations of thermodynamics, its basic postulates and implications. Acta Mech 27:1–54

    Article  MathSciNet  Google Scholar 

  40. Muschik W (1983) Extended formulation of the second law for open discrete systems. J Non-Equil Thermodyn 8:219–228

    Google Scholar 

  41. Meixner J (1969) Thermodynamik der Vorgänge in einfachen fluiden Medien und die Charakterisierung der Thermodynamik der irreversiblen Prozesse. Z Phys 219:79–104

    Article  Google Scholar 

  42. Day WA (1972) The Thermodynamics of Simple Materials with Fading Memory. Springer Tracts in Natural Philosophy. Vol. 22, Berlin

  43. Coleman BD, Owen DR (1974) A mathematical foundation of thermodynamics. Arch Rat Mech Anal 54:1–104

    Article  MATH  MathSciNet  Google Scholar 

  44. Gurtin ME, Williams W (1967) An axiomatic foundation for continuum thermodynamics. Arch Rat Mech Anal 26:83–117

    Article  MATH  MathSciNet  Google Scholar 

  45. Muschik W (1977) A phenomenological foundation of non-linear O-C-reciprocity relations. J Non-Equil Thermodyn 2:109–124

    Google Scholar 

  46. Truesdell C (1969) Rational Thermodynamics. Lect.7, McGraw-Hill, New York

  47. Lebon G (1984) An approach to extended irreversible thermodynamics. In: Casas-Vázquez J, Jou D, Lebon G (Eds), Recent Developments in Nonequilibrium Thermodynamics, Lecture Notes in Physics 199. Springer, Berlin, pp. 72–104

  48. Coleman BD, Mizel VJ (1964) Existence of caloric equations of state in thermodynamics. J Chem Phys 40:116–1125

    Article  MathSciNet  Google Scholar 

  49. Muschik W, Ehrentraut H (1996) An amendment to the second law. J Non-Equil Thermodyn 21:175–192

    MATH  Google Scholar 

  50. Maugin GA (1999) The Thermomechanics of Nonlinear Irreversible Behaviors. An Introduction. World Scientific, Singapore, ISBN 981-02-3375-2, Sect.3.3.B

  51. Liu IS (1972) Method of Lagrange multipliers for exploitation of the entropy principle. Arch Rat Mech Anal 46:131–148

    MATH  Google Scholar 

  52. Novikov II (1958) The efficiency of atomic power stations. J Nucl Energ II 7:125–128 translated from Atomnaya Energiya 3:409 (1957)

    Google Scholar 

  53. Curzon FL, Ahlborn B (1975) Efficiency of a Carnot engine at maximum power output. Am J Phys 43:22–24

    Article  Google Scholar 

  54. Hoffmann KH, Burzler J, Fischer A, Schaller M, Schubert S (2003) Optimal process paths for endoreversible systems. J Non-Equil Thermodyn 28:233–268

    Article  Google Scholar 

  55. Muschik W, Hoffmann KH (2006) Endoreversible thermodynamics: A tool for simulating and comparing processes of discrete systems. J Non-Equil Thermodyn 31:293–317

    Article  MATH  Google Scholar 

  56. Blenk S, Muschik W (1991) Orientational balances for nematic liquid crystals. J Non-Equil Thermodyn 16:67–87

    MATH  Google Scholar 

  57. Blenk S, Ehrentraut H, Muschik W (1991) Statistical foundation of macroscopic balances for liquid crystals in alignment tensor formulation. Physica A 174:119–138

    Article  MathSciNet  Google Scholar 

  58. Ehrentraut H, Muschik W, Papenfuss C (1997) Mesoscopically derived orientation dynamics of liquid crystals. J Non-Equil Thermodyn 22:285–298

    Article  MATH  Google Scholar 

  59. Blenk S, Ehrentraut H, Muschik W (1992) Macroscopic constitutive equations for liquid crystals induced by their mesoscopic orientation distribution. Int J Eng Sci 30:1127–1143

    Article  MATH  MathSciNet  Google Scholar 

  60. Muschik W, Su B (1997) Mesoscopic interpretation of Fokker–Planck equation describing time behavior of liquid crystal orientation. J Chem Phys 107:580–584

    Article  Google Scholar 

  61. Papenfuss C, Ván P, Muschik W (2003) Mesoscopic theory of microcracks. Arch Mech 55:481–499

    MATH  Google Scholar 

  62. Grmela M, Öttinger HC (1997) Dynamics and thermodynamics of complex fluids, development of a GENERIC formalism. Phys Rev E 56:6620–6632

    Article  MathSciNet  Google Scholar 

  63. Öttinger HC, Grmela M (1997) Dynamics and thermodynamics of complex fluids, illustrations of the GENERIC formalism. Rev E 56:6633–6655

    Google Scholar 

  64. Grmela M, Jou D, Casas-Vázquez J (1998) Nonlinear and Hamiltonian extended and irreversible thermodynamics. J Chem Phys 108:7937–7945

    Article  Google Scholar 

  65. Öttinger HC (1998) General projection operator formalism for the dynamics and thermodynamics of complex fluids. Phys Rev E 57:1416–1420

    Article  Google Scholar 

  66. Muschik W, Gümbel S, Kröger M, Öttinger HC (2000) A simple example for comparing GENERIC with rational non-equilibrium thermodynamics. Physica A 285:448–466

    Article  MATH  Google Scholar 

  67. Glansdorff P, Prigogine I (1971) Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley, London, ch. IX, sec.8

  68. Glansdorff P, Prigogine I (1954) Sur les propriétés différentielle de la production d’entropie. Physica 20:773–780

    Article  MATH  Google Scholar 

  69. Gyarmati I (1970) Non-Equilibrium Thermodynamics, Engineering Science Library. Springer, Berlin, ch. V.1.

  70. Glansdorff P, Prigogine I (1964) On a general evolution criterion in macroscopic physics. Physica 30:351–374

    Article  MathSciNet  Google Scholar 

  71. Glansdorff P, Nicolis G, Prigogine I (1974) The thermodynamic stability theory of non-equilibrium states. Proc Nat Acad Sci USA 71:197–199

    Article  Google Scholar 

  72. Muschik W, Papenfuss C (1993) An evolution criterion of nonequilibrium thermodynamics and its application to liquid crystals. Physica A 201:515–526

    Article  Google Scholar 

  73. Papenfuss C, Muschik W (1997) Evolution criterion in nonequilibrium and a variational principle for equilibrium states of free-standing liquid crystalline films. Phys Rev E 56:4275–4281

    Article  Google Scholar 

  74. Radzikowska E, Kotowski R, Muschik W (2001) A nonequilibrium evolution criterion for electromagnetic bodies. J Non-Equil Thermodyn 26:215–230

    Article  MATH  Google Scholar 

  75. Toda M, Kubo R, Saito N (1978) Statistical Physics I: Equilibrium Statistical Mechanics. Springer, Berlin

    Google Scholar 

  76. Beretta GP, On the general equation of motion of quantum thermodynamics and the distinction between quantal and nonquantal uncertainties. arXiv:quant-ph/0509116v1 17Sep2005

  77. Muschik W, Kaufmann M (1994) Quantum-thermodynamical description of discrete non-equilibrium systems. J Non-Equil Thermodyn 19:76–94

    MATH  Google Scholar 

  78. Jaynes ET (1957) Information theory and statistical mechanics I, II. Phys Rev 106:620–630, 108:171–190

    Google Scholar 

  79. Schwegler H (1965) Verallgemeinerte physikalische Entropien auf informationstheoretischer Grundlage. Z Naturforsch 20a:1543–1553

    Google Scholar 

  80. Martinas K, Frankowicz M (2001) Extropy. Periodica Polytechnica Ser Chem Eng 44:29–38

    Google Scholar 

  81. Kato A, Kaufmann M, Muschik W, Schirrmeister D (2000) Different dynamics and entropy rates in quantum-thermodynamics. J Non-Equil Thermodyn 25:63–86

    Article  MATH  Google Scholar 

  82. Robertson B (1966) Equations of motion in nonequilibrium statistical mechanics. Phys Rev 144:151–161

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Muschik.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Muschik, W. Why so many “schools” of thermodynamics? . Forsch Ingenieurwes 71, 149–161 (2007). https://doi.org/10.1007/s10010-007-0053-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-007-0053-9

Keywords

  • State Space
  • Entropy Production
  • Density Operator
  • Discrete System
  • Irreversible Thermodynamic