Skip to main content
Log in

Three-dimensional differential equations dynamic analysis for non-linear structures

Dynamische Analyse von nichtlinearen Strukturen mit dreidimensionalen Differentialgleichungen

  • Originalarbeiten/Originals
  • Published:
Forschung im Ingenieurwesen Aims and scope Submit manuscript

Abstract

A new dynamic model is investigated for the solution of the three-dimensional structural analysis problem of a non-linear structure subjected under seismic forces. Such problem is reduced to the solution of a system of ordinary differential equations of the second kind and this system is numerically evaluated by using a kind of finite elements and by solving the corresponding eigenvalues-eigenvectors problem.

An application of structural analysis is given to the determination of the eigenvalues and eigenvectors of a 10-floor building consisting of reinforced concrete and subjected to an horizontal seismic vibration.

Zusammenfassung

Ein neues dynamisches Model für die Lösung eines dreidimensionalen Analyseproblems von nichtlinearen Strukturen unter Einwirkung seismischer Kräfte wird untersucht. Das Problem wird auf die Lösung eines Systems gewöhnlicher Differentialgleichungen zweiter Ordnung zurückgeführt, welches numerisch mit einem Finite-Element Ansatz unter Einbeziehung des zugehörigen Eigenwerte-/Eigenvektorproblems gelöst wird. Die Anwendung dieser neuen Methode der Strukturanalyse erfolgt am Beispiel eines zehnstöckigen Gebäudes aus verstärktem Beton, welches horizontalen Erdbebenlasten ausgesetzt ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ladopoulos G (1988) On a new integration rule with the Gegenbauer polynomials for singular integral equations, used in the theory of elasticity. Ing Arch 58:35–46

    Article  MATH  Google Scholar 

  2. Ladopoulos EG (1988) On the numerical evaluation of the mulidimensional singular integrals and integral equations used in the theory of linear viscoelasticity. Int J Math Math Sci 11:561–574

    Article  MathSciNet  MATH  Google Scholar 

  3. Ladopoulos EG (1991) Singular integral operators method for three-dimensional elasto-plastic stress analysis. Comput Struct 38:1–8

    Article  MATH  Google Scholar 

  4. Ladopoulos EG (1991) Singular integral operators method for two-dimensional elasto-plastic stress analysis. Forsch Ingenieurwes 57:152–158

    Article  Google Scholar 

  5. Ladopoulos EG (1993) Singular integral operators method for anisotropic elastic stress analysis. Comput Struct 48:965–973

    Article  MATH  Google Scholar 

  6. Ladopoulos EG (2000) Singular Integral Equations, Linear and Non-linear Theory and its Applications in Science and Engineering. Springer-Verlag, Berlin New York

    MATH  Google Scholar 

  7. Ladopoulos EG (1991) Non-linear integro-differential equations used in orthotropic shallow spherical shell analysis. Mech Res Commun 18:111–119

    Article  MATH  Google Scholar 

  8. Ladopoulos EG (1994) Non-linear integro-differential equations in sandwich plates stress analysis. Mech Res Commun 21:95–102

    Article  MATH  Google Scholar 

  9. Ladopoulos EG (1995) Non-linear singular integral computational analysis for unsteady flow problems. Renew Energ 6:901–906

    Article  Google Scholar 

  10. Ladopoulos EG (1997) Non-linear singular integral representation analysis for incviscid flowfields of unsteady airfoils. Int J Nonlinear Mech 32:377–384

    Article  MATH  Google Scholar 

  11. Oden JT (1969) A general theory of finite elements – I: Topological considerations. Int J Numer Meth Eng 1:205–221

    Article  MATH  Google Scholar 

  12. Oden JT (1969) A general theory of finite elements – II: Applications. Int J Numer Meth Eng 1:247–260

    Article  MATH  Google Scholar 

  13. Oden JT (1971) Finite Elements of Non-linear Continua. McGraw-Hill, Berkshire

    Google Scholar 

  14. Wilson EL (1971) Solid SAP – A static analysis program for three-dimensional solid structures. SESM Report 71–19, Dept. Civil Engng, Univ California, Berkeley

  15. Bathe KJ, Wilson EL (1973) Stability and accuracy analysis of direct integration methods. Int J Earth Eng Struct Dynam 1:283–291

    Article  Google Scholar 

  16. Bathe KJ, Wilson EL, Iding RH (1974) NONSAP – A structural analysis program for static and dynamic response of nonlinear systems. SESM Report 74–3, Dept. Civil Engng, Univ California, Berkeley

  17. Bathe KJ, Wilson EL, Peterson FE (1974) SAPIV – A structural analysis program for static and dynamic response of linear systems. Report EERC 73–11, Dept. Civil Engng, Univ California, Berkeley

  18. Zienkiewicz OC (1974) Constrained variational principles and penalty function methods in the finite element analysis. Lecture Notes in Mathematics 363:207–314, Springer-Verlag, New York

  19. Zienkiewicz OC (1994) The Finite Element Method. McGraw-Hill, Berkshire

    Google Scholar 

  20. Zienkiewicz OC, Parekh CJ (1970) Transient field problems – two and three dimensional analysis by isoparametric finite elements. Int J Numer Meth Eng 2:61–71

    Article  MATH  Google Scholar 

  21. Zienkiewicz OC, Lewis RH (1973) An analysis of various time stepping schemes for initial value problems. Int J Earth Eng Struct Dynam 1:407–408

    Article  Google Scholar 

  22. Christie I, Griffiths DF, Mitchell AR, Zienkiewicz OC (1976) Finite element methods for second order equations with significant first derivatives. Int J Numer Meth Eng 10:1389–1396

    Article  MathSciNet  MATH  Google Scholar 

  23. Zienkiewicz OC, Kelly DW, Bettess P (1977) The coupling of the finite element method and boundary solution procedures. Int J Numer Meth Eng 11:355–3375

    Article  MathSciNet  MATH  Google Scholar 

  24. Tottenham H, Brebbia CA (1970) Finite Element Techniques in Structural Mechanics. Southampton Univ Press, Southampton

    Google Scholar 

  25. Argyris JH, Fried I, Scharpf DW (1968) The TUBA family of plate elements for the matrix displacement method. Aeronaut J 72:701–709

    Google Scholar 

  26. Argyris JH, Mareczek G (1974) Finite element analysis of slow incompressible viscous fluid motion. Ing Arch 43:92–109

    Article  MathSciNet  MATH  Google Scholar 

  27. Fu CC (1972) On the stability of explicit methods for numerical integration of the equations of matrices in finite element methods. Int J Numer Meth Eng 4:95–107

    Article  MATH  Google Scholar 

  28. Kreig RD, Key SW (1973) Transient shock response by numerical time integration. Int J Numer Meth Eng 7:273–286

    Article  Google Scholar 

  29. Belytschko T, Chiapetta RL, Bartel HD (1976) Efficient large scale non-linear transient analysis by finite elements. Int J Numer Meth Eng 10:579–596

    Article  Google Scholar 

  30. Goudreau GL, Taylor RL (1972) Evaluation of numerical integration methods in elastodynamics. Comp Meth Appl Mech Eng 2:69–97

    Article  MathSciNet  Google Scholar 

  31. Hellen TK (1972) Effective quadrature rules for quadratic solid isoparametric finite elements. Int J Numer Meth Eng 4:597–600

    Article  Google Scholar 

  32. Fried I (1973) Accuracy and condition of curved (isoparametric) finite elements. J Sound Vib 31:345–355

    Article  MATH  Google Scholar 

  33. Fried I (1974) Numerical integration in the finite element method. Comput Struct 4:921–932

    Article  MathSciNet  Google Scholar 

  34. Ziamal M (1974) Curved elements in the finite element method. SIAM J Numer Anal 11:347–362

    Article  MathSciNet  Google Scholar 

  35. Morley LSD (1971) On the constant moment plate bending element. J Strain Anal Eng 6:20–24

    Article  Google Scholar 

  36. Nagtegaal JC, Parks DM, Rice JR (1974) On numerically accurate finite element solutions in the fully plastic range. Comp Meth Appl Mech Eng 4:153–178

    Article  MathSciNet  MATH  Google Scholar 

  37. Batoz JL, Chattopadhyay A, Dhatt G (1976) Finite element large deflection analysis of shallow shells. Int J Numer Meth Eng 10:35–38

    Article  Google Scholar 

  38. Matsui T, Matsuoka O (1976) A new finite element scheme for instability analysis of thin shells. Int J Numer Meth Eng 10:145–170

    Article  MATH  Google Scholar 

  39. Falter B (1992) Statikprogramme für Personalcomputer. Werner Verlag, Düsseldorf

    Google Scholar 

  40. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1999) Numerical Recipies in Fortran 77: The Art of Scientific Computing. Second Ed. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E.G. Ladopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladopoulos, E. Three-dimensional differential equations dynamic analysis for non-linear structures. Forsch Ingenieurwes 70, 80–89 (2005). https://doi.org/10.1007/s10010-005-0014-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10010-005-0014-0

Keywords

Navigation