Assessing SMT and CLP approaches for workflow nets verification

  • Hadrien Bride
  • Olga Kouchnarenko
  • Fabien PeureuxEmail author
  • Guillaume Voiron


In the actual business world, companies rely more and more on workflows to model the core of their business processes. In this context, the focus of workflow analysts is made on the verification of workflows specifications, in particular of modal specifications that allow the description of necessary or admissible behaviors. The design and the analysis of business processes commonly relies on workflow nets, a suited class of Petri nets. The goal of this paper is to evaluate and compare in a deep way two resolution methods—satisfiability modulo theory and constraint logic programming—applied to the verification of modal specifications over workflow nets. Firstly, it provides a concise description of the verification methods based on constraint solving. Secondly, it introduces the toolchain developed to automate the full verification process. Thirdly, it describes the experimental protocol designed to evaluate and compare the scalability and efficiency of both resolution approaches and reports on the obtained results. Finally, these obtained results are discussed in detail, lessons learned from these experiments are given, and, on the basis of experiments feedback, directions for improvement and future work are suggested.


Workflow nets Modal specifications Verification method Experimental comparison Satisfiability modulo theory Constraint solving problem 


  1. 1.
    Bellegarde, F., Darlot, C., Julliand, J., Kouchnarenko, O.: Reformulation: a way to combine dynamic properties and b refinement. In: FME, vol. 2021, pp. 2–19. Springer, Berlin (2001)Google Scholar
  2. 2.
    Bi, H.H., Zhao, J.L.: Applying propositional logic to workflow verification. Inf. Technol. Manag. 5(3–4), 293–318 (2004)CrossRefGoogle Scholar
  3. 3.
    Bride, H., Kouchnarenko, O., Peureux, F.: Verifying modal workflow specifications using constraint solving. In: Proceedings of the International Conference on Integrated Formal Methods (IFM’14), Volume 8739 of LNCS, pp. 171–186, Bertinoro, Italy, September 2014. SpringerGoogle Scholar
  4. 4.
    Bride, H., Kouchnarenko, O., Peureux, F.: Constraint solving for verifying modal specifications of workflow nets with data. In: Proceedings of 10th International Ershov Informatics Conference on Perspectives of System Informatics (PSI’15), Volume 9609 of LNCS, pp. 75–90, Kazan, Russia, August 2015. SpringerGoogle Scholar
  5. 5.
    Bride, H., Kouchnarenko, O., Peureux, F.: Reduction of workflow nets for generalised soundness verification. In: Proceedings of the 18th International Conference on Verification, Model-Checking, and Abstract Interpretation (VMCAI’17), Volume 10145 of LNCS, pp. 91–111, Paris, France, January 2017. SpringerGoogle Scholar
  6. 6.
    Bride, H., Kouchnarenko, O., Peureux, F., Voiron, G.: Comparaison des approches SMT et CSP appliquées à la vérification de réseaux workflows. In: Actes des 15èmes journées sur les Approches Formelles dans l’Assistance au Développement de Logiciels (AFADL’16), pp. 11–12, Besançon, France, June 2016Google Scholar
  7. 7.
    Bride, H., Kouchnarenko, O., Peureux, F., Voiron, G.: Workflow nets verification: SMT or CLP? In: Proceedings of the 21st International Workshop on Formal Methods for Industrial Critical Systems and Automated Verification of Critical Systems (FMICS-AVoCS’16), Volume 9933 of LNCS, pp. 1–17, Pisa, Italy, September 2016. SpringerGoogle Scholar
  8. 8.
    Carlsson, M., et al.: SICStus Prolog User’s Manual (Release 4.2.3). Swedish Institute of Computer Science, Kista (2012)Google Scholar
  9. 9.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. (TOPLAS) 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  10. 10.
    De Moura, L., Bjørner, N.: Z3: an efficient smt solver. In: Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer (2008)Google Scholar
  11. 11.
    De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)CrossRefGoogle Scholar
  12. 12.
    Edward, P.K.T.: Foundations of Constraint Satisfaction. Computation in Cognitive Science. Academic Press, Cambridge (1993)Google Scholar
  13. 13.
    Elhog-Benzina, D., Haddad, S., Hennicker, R.: Refinement and asynchronous composition of modal petri nets. Trans. Petri Nets Other Models Concurr. 5, 96–120 (2012)CrossRefzbMATHGoogle Scholar
  14. 14.
    Espada, M.V., van de Pol, J.: Accelerated modal abstractions of labelled transition systems. In: International Conference on Algebraic Methodology and Software Technology, pp. 338–352. Springer (2006)Google Scholar
  15. 15.
    Fahland, D., Favre, C., Koehler, J., Lohmann, N., Völzer, H., Wolf, K.: Analysis on demand: instantaneous soundness checking of industrial business process models. Data Knowl. Eng. 70(5), 448–466 (2011)CrossRefGoogle Scholar
  16. 16.
    Goedertier, S., Vanthienen, J.: Designing compliant business processes with obligations and permissions. In: Business Process Management Workshops, pp. 5–14. Springer (2006)Google Scholar
  17. 17.
    Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes and business contracts. In: EDOC’06: Proceedings of the 10th IEEE International Enterprise Distributed Object Computing Conference 2006, pp. 221–232. IEEE (2006)Google Scholar
  18. 18.
    Haddad, S.: Decidability and complexity of Petri net problems. In: Petri Nets: Fundamental Models, Verification and Applications, pp. 87–122 (2009).
  19. 19.
    Kleine, M., Göthel, T.: Specification, verification and implementation of business processes using CSP. In: TASE, pp. 145–154. IEEE Computer Society (2010)Google Scholar
  20. 20.
    Kordon, F., Garavel, H., Hillah, L. M., Hulin-Hubard, F., Berthomieu, B., Ciardo, G., Colange, M., Dal Zilio, S., Amparore, E., Beccuti, M., Liebke, T., Meijer, J., Miner, A., Rohr, C., Srba, J., Thierry-Mieg, Y., van de Pol, J., Wolf, K.: Complete Results for the 2017 Edition of the Model Checking Contest. (2017). Accessed Jan 2018
  21. 21.
    Kouchnarenko, O., Sidorova, N., Trcka, N.: Petri nets with may/must semantics. In: Workshop on Concurrency, Specification, and Programming - CS&P 2009, vol. 1, Kraków-Przegorzaly, Poland, September 2009Google Scholar
  22. 22.
    Larsen, K.G.: Modal specifications. In: Proceedings of the International Workshop on Automatic Verification Methods for Finite State Systems, pp. 232–246, London, UK. Springer (1990)Google Scholar
  23. 23.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of the Third Annual Symposium on Logic in Computer Science, 1988. LICS ’88, pp. 203–210 (1988)Google Scholar
  24. 24.
    Mayr, E.W.: An algorithm for the general petri net reachability problem. SIAM J. Comput. 13(3), 441–460 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Monakova, G., Kopp, O., Leymann, F., Moser, S., Schäfers, K.: Verifying business rules using an SMT solver for BPEL processes. In: BPSC, Volume 147 of LNI, pp. 81–94. GI (2009)Google Scholar
  26. 26.
    Murata, T.: Petri nets: properties, analysis and applications. IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  27. 27.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Universität Hamburg (1962)Google Scholar
  28. 28.
    Pólrola, A., Cybula, P., Meski, A.: Smt-based reachability checking for bounded time Petri nets. Fundam. Inform. 135(4), 467–482 (2014)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Salimifard, K., Wright, M.: Petri net-based modelling of workflow systems: an overview. Eur. J. Oper. Res. 134(3), 664–676 (2001)CrossRefzbMATHGoogle Scholar
  30. 30.
    Schmidt, K.: Lola a low level analyser. In: International Conference on Application and Theory of Petri Nets, pp. 465–474. Springer (2000)Google Scholar
  31. 31.
    Soliman, S.: Finding minimal p/t-invariants as a csp. In: Proceedings of the 4th Workshop on Constraint Based Methods for Bioinformatics WCB, vol. 8 (2008)Google Scholar
  32. 32.
    Suzuki, I., Murata, T.: A method for stepwise refinement and abstraction of Petri nets. J. Comput. Syst. Sci. 27(1), 51–76 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Van Der Aalst, W.M.P.: Three good reasons for using a Petri-net-based workflow management system. In: Proceedings of the International Working Conference on Information and Process Integration in Enterprises (IPIC’96), pp. 179–201. Cambridge (1996)Google Scholar
  34. 34.
    van der Aalst, W.M.P.: Verification of workflow nets. In: Proceedinga of the 18th International Conference on Application and Theory of Petri Nets, ICATPN ’97, pp. 407–426, London, UK. Springer (1997)Google Scholar
  35. 35.
    van der Aalst, W.M.P.: The application of Petri nets to workflow management. J. Circuits Syst. Comput. 08(01), 21–66 (1998)CrossRefGoogle Scholar
  36. 36.
    Van Der Aalst, W.M.P.: Woflan: a Petri-net-based workflow analyzer. Syst. Anal. Model. Simul. 35(3), 345–358 (1999)zbMATHGoogle Scholar
  37. 37.
    van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification, decidability, and analysis. Form. Asp. Comput. 23(3), 333–363 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Van Hee, K., Sidorova, N., Voorhoeve, M.: Soundness and separability of workflow nets in the stepwise refinement approach. In ICATPN, vol. 2679, pp. 337–356. Springer (2003)Google Scholar
  39. 39.
    Van Hee, K.M., Liu, Z.: Generating benchmarks by random stepwise refinement of Petri nets. In: ACSD/Petri Nets Workshops, pp. 403–417 (2010)Google Scholar
  40. 40.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Log. Methods Comput. Sci. 8(3), 1–15 (2012)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Wong, P.Y.H., Gibbons, J.: A process-algebraic approach to workflow specification and refinement. In Proceedings of the 6th International Conference on Software Composition, SC’07, pp. 51–65. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hadrien Bride
    • 1
    • 2
  • Olga Kouchnarenko
    • 1
  • Fabien Peureux
    • 1
    Email author
  • Guillaume Voiron
    • 1
  1. 1.Institut FEMTO-ST – UMR CNRS 6174Univ. Bourgogne Franche-ComtéBesançonFrance
  2. 2.LS2N, UMR CNRS 6004Ecole Centrale de NantesNantesFrance

Personalised recommendations