Advertisement

Mining parametric temporal logic properties in model-based design for cyber-physical systems

  • Bardh Hoxha
  • Adel Dokhanchi
  • Georgios Fainekos
Regular Paper

Abstract

One of the advantages of adopting a model-based development process is that it enables testing and verification at early stages of development. However, it is often desirable to not only verify/falsify certain formal system specifications, but also to automatically explore the properties that the system satisfies. In this work, we present a framework that enables property exploration for cyber-physical systems. Namely, given a parametric specification with multiple parameters, our solution can automatically infer the ranges of parameters for which the property does not hold on the system. In this paper, we consider parametric specifications in metric or Signal Temporal Logic (MTL or STL). Using robust semantics for MTL, the parameter mining problem can be converted into a Pareto optimization problem for which we can provide an approximate solution by utilizing stochastic optimization methods. We include algorithms for the exploration and visualization of multi-parametric specifications. The framework is demonstrated on an industrial size, high-fidelity engine model as well as examples from related literature.

Keywords

Metric Temporal Logic Signal Temporal Logic Verification Testing Robustness Multiple parametric specification mining Cyber-physical systems 

Notes

Acknowledgements

This work has been partially supported by award NSF CNS 1116136 and CNS 1350420. Also, we thank the Toyota Technical Center for donating a license for the Simuquest Enginuity tool package.

References

  1. 1.
    Lions, J.L., Lbeck, L., Fauquembergue, J.L., Kahn, G., Kubbat, W., Levedag, S., Mazzini, L., Merle, D., O’Halloran, C.: Ariane 5, flight 501 failure, report by the inquiry board. Technical report, CNES (1996)Google Scholar
  2. 2.
    Hoffman, E.J., Ebert, W.L., Femiano, M.D., Freeman, H.R., Gay, C.J., Jones, C.P., Luers, P.J., Palmer, J.G.: The near rendezvous burn anomaly of december 1998. Technical report, Johns Hopkins University (1999)Google Scholar
  3. 3.
    Oss, D.G.V.: Computer software in civil aircraft. In: Digital Avionics Systems Conference, 1991. Proceedings., IEEE/AIAA 10th, IEEE pp. 324–330. (1991)Google Scholar
  4. 4.
    Tripakis, S., Dang, T.: Modeling, verification and testing using timed and hybrid automata. In: Model-Based Design for Embedded Systems. CRC Press (2009)Google Scholar
  5. 5.
    Kapinski, J., Deshmukh, J., Jin, X., Ito, H., Butts, K.: Simulation-guided approaches for verification of automotive powertrain control systems. In: American Control Conference (ACC), 2015, IEEE, pp. 4086–4095 (2015)Google Scholar
  6. 6.
    Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas, G.J.: Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems. In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation and Control, ACM Press, pp. 211–220 (2010)Google Scholar
  7. 7.
    Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Probabilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput. Syst. (TECS) 12, 95 (2013)Google Scholar
  8. 8.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst. 2, 255–299 (1990)CrossRefGoogle Scholar
  9. 9.
    Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Proceedings of FORMATS-FTRTFT, volume 3253 of LNCS, pp. 152–166 (2004)Google Scholar
  10. 10.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications. In: Formal Approaches to Testing and Runtime Verification, volume 4262 of LNCS., pp. 178–192. Springer (2006)Google Scholar
  11. 11.
    Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time signals. Theor. Comput. Sci. 410, 4262–4291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Sankaranarayanan, S., Fainekos, G.: Falsification of temporal properties of hybrid systems using the cross-entropy method. In: ACM International Conference on Hybrid Systems: Computation and Control (2012)Google Scholar
  13. 13.
    Annapureddy, Y.S.R., Fainekos, G.E.: Ant colonies for temporal logic falsification of hybrid systems. In: Proceedings of the 36th Annual Conference of IEEE Industrial Electronics, pp. 91–96 (2010)Google Scholar
  14. 14.
    Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties on embedded systems. In: Int. Conference on Testing Software and Systems (2012)Google Scholar
  15. 15.
    Asarin, E., Donzé, A., Maler, O., Nickovic, D.: Parametric identification of temporal properties. In: Runtime Verification, Volume 7186 of LNCS., Springer (2012)Google Scholar
  16. 16.
    Myers, R.H., Montgomery, D.C., Anderson-Cook, C.M.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. WileyGoogle Scholar
  17. 17.
    Annapureddy, Y.S.R., Liu, C., Fainekos, G.E., Sankaranarayanan, S.: S-taliro: A tool for temporal logic falsification for hybrid systems. In: Tools and Algorithms for the Construction and Analysis of Systems, Volume 6605 of LNCS., pp. 254–257. Springer (2011)Google Scholar
  18. 18.
    S-TaLiRo: Temporal logic falsification of cyber-physical systems. https://sites.google.com/a/asu.edu/s-taliro/s-taliro (2015)
  19. 19.
    Hoxha, B., Bach, H., Abbas, H., Dokhanchi, A., Kobayashi, Y., Fainekos, G.: Towards formal specification visualization for testing and monitoring of cyber-physical systems. In: Int. Workshop on Design and Implementation of Formal Tools and Systems (2014)Google Scholar
  20. 20.
    Sankaranarayanan, S., Fainekos, G.: Simulating insulin infusion pump risks by in-silico modeling of the insulin-glucose regulatory system. In: Int. Conf. on Computational Methods in Systems Biology (2012)Google Scholar
  21. 21.
    Jiang, Z., Pajic, M., Mangharam, R.: Cyber-physical modeling of implantable cardiac medical devices. Proc. IEEE 100, 122–137 (2012)CrossRefGoogle Scholar
  22. 22.
    Chen, T., Diciolla, M., Kwiatkowska, M.Z., Mereacre, A.: A simulink hybrid heart model for quantitative verification of cardiac pacemakers. In: Proceedings of the Int. Conf. on Hybrid systems: Computation and Control, ACM, pp. 131–136 (2013)Google Scholar
  23. 23.
    Abbas, H., Hoxha, B., Fainekos, G., Ueda, K.: Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In: Cyber Technology in Automation, Control, and Intelligent Systems, 2014 IEEE 4th Annual Int. Conf. on. (2014)Google Scholar
  24. 24.
    Alur, R., Henzinger, T.A.: Real-Time Logics: Complexity and Expressiveness. In: Fifth Annual IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press, pp. 390–401 (1990)Google Scholar
  25. 25.
    Hoxha, B., Mavridis, N., Fainekos, G.: Vispec : A graphical tool for elicitation of mtl requirements. In: Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (2015)Google Scholar
  26. 26.
    Zhao, Q., Krogh, B.H., Hubbard, P.: Generating test inputs for embedded control systems. IEEE Control Syst. Mag. August 49–57 (2003)Google Scholar
  27. 27.
    Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Approximating the pareto front of multi-criteria optimization problems. In: TACAS, pp. 69–83. Springer (2010)Google Scholar
  28. 28.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms, vol. 16. Wiley, New Jersey (2001)zbMATHGoogle Scholar
  29. 29.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138, 3–34 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using s-taliro. In: Proceedings of the ACC. (2012)Google Scholar
  31. 31.
    Donze, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Formal Modelling and Analysis of Timed Systems. LNCS, Springer (2010)Google Scholar
  32. 32.
    Jin, X., Donzé, A., Deshmukh, J.V., Seshia, S.A.: Mining requirements from closed-loop control models. In: Proceedings of the 16th International Conference on Hybrid Systems: Computation and Control, ACM, pp. 43–52 (2013)Google Scholar
  33. 33.
    Hoxha, B., Dokhanchi, A., Fainekos, G.E.: Mining parametric temporal logic properties in model based design for cyber-physical systems, extended version. Technical Report arXiv:1512.07956v2 (2016)
  34. 34.
    Chutinan, A., Butts, K.R.: Dynamic Analysis of Hybrid System Models for Design Validation. Technical report, Ford Motor Company (2002)Google Scholar
  35. 35.
    Simuquest: Enginuity. (http://www.simuquest.com/products/enginuity) Accessed 14 October 2013
  36. 36.
    Conrad, M., Fey, I.: Testing automotive control software. In: Automotive Embedded Systems Handbook. CRC Press (2008)Google Scholar
  37. 37.
    Koopman, P.: Better Embedded System Software. Drumnadrochit Education LLC (2010)Google Scholar
  38. 38.
    Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid embedded systems. In: Proceedings of the 2004 IEEE International Conference on Information Reuse and Integration, pp. 487–492 (2004)Google Scholar
  39. 39.
    Plaku, E., Kavraki, L.E., Vardi, M.Y.: Falsification of ltl safety properties in hybrid systems. In: Proc. of the Conf. on Tools and Algorithms for the Construction and Analysis of Systems. LNCS, Springer (2009)Google Scholar
  40. 40.
    Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with application to simulink/stateflow verification. In: Proceedings of the Int. Conf. on Hybrid Systems: Computation and Control, pp. 243–252 (2010)Google Scholar
  41. 41.
    Alur, R., Etessami, K., La Torre, S., Peled, D.: Parametric temporal logic for model measuring. ACM Trans. Comput. Logic 2, 388–407 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Di Giampaolo, B., La Torre, S., Napoli, M.: Parametric metric interval temporal logic. In: Language and Automata Theory and Applications. LNCS. Springer (2010)Google Scholar
  43. 43.
    Fages, F., Rizk, A.: On temporal logic constraint solving for analyzing numerical data time series. Theor. Comput. Sci. 408, 55–65 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: On a continuous degree of satisfaction of temporal logic formulae with applications to systems biology. In: International Conference on Computational Methods in Systems Biology. Volume 5307 of LNCS., pp. 251–268. Springer (2008)Google Scholar
  45. 45.
    Chan, W.: Temporal-logic queries. In: Proceedings of the 12th International Conference on Computer Aided Verification. Volume 1855 of LNCS., pp. 450–463. Springer (2000)Google Scholar
  46. 46.
    Bruns, G., Godefroid, P.: Temporal logic query checking. In: Proceedings of the 16th Annual Symposium on Logic in Computer Science, IEEE Computer Society (2001)Google Scholar
  47. 47.
    Chechik, M., Gurfinkel, A.: Tlqsolver: A temporal logic query checker. In: Proceedings of the 15th International Conference on Computer Aided Verification. Volume 2725., pp. 210–214. Springer (2003)Google Scholar
  48. 48.
    Gurfinkel, A., Devereux, B., Chechik, M.: Model exploration with temporal logic query checking. SIGSOFT Softw. Eng. Notes 27, 139–148 (2002)CrossRefGoogle Scholar
  49. 49.
    Singh, A., Ramakrishnan, C., Smolka, S.A.: Query-based model checking of ad hoc network protocols. In: Proceedings of Concurrency Theory, pp. 603–619. Springer (2009)Google Scholar
  50. 50.
    Wasylkowski, A., Zeller, A.: Mining temporal specifications from object usage. In: 24th International Conference on Automated Software Engineering (2009)Google Scholar
  51. 51.
    Kong, Z., Jones, A., Medina Ayala, A., Aydin Gol, E., Belta, C.: Temporal logic inference for classification and prediction from data. In: Proceedings of the 17th International Conference on Hybrid systems: Computation and Control, ACM, pp. 273–282 (2014)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Bardh Hoxha
    • 1
  • Adel Dokhanchi
    • 1
  • Georgios Fainekos
    • 1
  1. 1.Arizona State UniversityTempeUSA

Personalised recommendations