Advertisement

Statistical model checking for unbounded until formulas

  • Nima Roohi
  • Mahesh ViswanathanEmail author
SMC

Abstract

Statistical model checking of unbounded time properties is challenging, because it requires an algorithm to estimate the measure of paths satisfying an unbounded until property from samples of finite length paths. In this paper, we survey all proposed algorithms for this problem, and critically evaluate them.

Keywords

Statistical model checking Unbounded until PCTL  

References

  1. 1.
    Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a statistical model checker for hybrid automata stochastic logic. In: Proceedings of the International Conference on the Quantitative Evaluation of Systems, pp. 143–144 (2011)Google Scholar
  2. 2.
    Basu, S., Ghosh, A.P., He, R.: Approximate model checking of PCTL involving unbounded path properties. In: Proceedings of the International Conference on Formal Engineering Methods, pp. 326–346 (2009)Google Scholar
  3. 3.
    Chow, Y.S., Robbins, H.: On the asymptotic theory of fixed-width sequential confidence intervals for the mean. Ann. Math. Stat. 36(2), 457–462 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. J. ACM 42(4), 857–907 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Forsythe, G.E., Leibler, R.: Matrix inversion by a Monte Carlo method. Math. Tables Other Aids Comput. 31(4), 127–129 (1950)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grosu, R., Smolka, S.: Monte-carlo model checking. In: Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 271–286 (2005)Google Scholar
  7. 7.
    Herault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Proceedings of the International Conference on Verification, Model Checking, and Abstract Interpretation, pp. 73–84 (2004)Google Scholar
  8. 8.
    Herault, T., Lassaigne, R., Peyronnet, S.: APMC 3.0: Approximate verification of discrete and continuous time Markov chains. In: Proceedings of the International Conference on the Quantitative Evaluation of Systems, pp. 129–130 (2006)Google Scholar
  9. 9.
    Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi terminal binary decision diagrams to represent and analyse continuous time Markov chains. In: Proceedings of the International Workshop on Numerical Solution of Markov Chains, pp. 188–207 (1999)Google Scholar
  10. 10.
    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–30 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ibe, O., Trivedi, K.: Stochastic Petri net models of polling systems. IEEE J. Sel. Areas Commun. 8(9), 1649–1657 (1990)CrossRefGoogle Scholar
  12. 12.
    Jegourel, C., Legay, A., Sedwards, A.: A platform for high performance statistical model checking—PLASMA. In: Proceedings of the International Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 498–503 (2012)Google Scholar
  13. 13.
    Lassaigne, R., Peyronnet, S.: Approximate verification of probabilistic systems. In: Proceedings of the Second Joint International Workshop in Process Algebra and Probabilistic Methods, Performance Modeling and Verification, pp. 213–214 (2002)Google Scholar
  14. 14.
    Lassaigne, R., Peyronnet, S.: Probabilistic verification and approximation. Ann. Pure Appl. Logic 152(1–3), 122–131 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Propp, D., Wilson, J.: Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Struct. Algorithms 9(1), 223–252 (1996)Google Scholar
  16. 16.
    El Rabih, D., Pekergin, N.: Statistical model checking using perfect simulation. In: Proceedings of the International Symposium on Automated Technology for Verification and Analysis, pp. 120–134 (2009)Google Scholar
  17. 17.
    Sebastio, S., Vandin, A.: Multivesta: Statistical model checking for discrete event simulators. In: Proceedings of the International Conference on Performance Evaluation Methodologies and Tools, pp. 310–315 (2013)Google Scholar
  18. 18.
    Sen, K., Viswanathan, M., Agha, G.: Statistical model checking of black-box probabilistic systems. In: Proceedings of the International Conference on Computer-Aided Verification, pp. 202–215 (2004)Google Scholar
  19. 19.
    Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic systems. In: Proceedings of the International Conference on Computer-Aided Verification, pp. 266–280 (2005)Google Scholar
  20. 20.
    Sen, K., Viswanathan, M., Agha, G.: VESTA: A statistical model-checker and analyzer for probabilistic systems. In: Proceedings of the International Conference on the Quantitative Evaluation of Systems, pp. 251–252 (2005)Google Scholar
  21. 21.
    Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state programs. In: Proceedings of the IEEE Symposium on Foundations of Computer Science, pp. 327–338 (1985)Google Scholar
  22. 22.
    Younes, H.L.S.: Verification and planning for stochastic processes with asynchronous events. Ph.D. thesis, Carnegie Mellon University (2005)Google Scholar
  23. 23.
    Younes, H.L.S., Clarke, E.M., Zuliani, P.: Statistical verification of probabilistic properties with unbounded until. In: Proceedings of the Brazilian Symposium on Formal Methods, pp. 144–160 (2010)Google Scholar
  24. 24.
    Younes, H.L.S., Kwiatkowska, M.Z., Norman, G., Parker, D.: Numerical vs. statistical probabilistic model checking. Softw. Tools Technol. Transf. 8(3), 216–228 (2006)CrossRefGoogle Scholar
  25. 25.
    Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Proceedings of the International Conference on Computer-Aided Verification, pp. 223–235 (2002)Google Scholar
  26. 26.
    Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a focus on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zapreev, I.S.: Model checking Markov chains: techniques and tools. Ph.D. thesis, University of Twente (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.University of Illinois, Urbana-ChampaignChampaignUSA

Personalised recommendations