Skip to main content

An abstraction refinement approach combining precise and approximated techniques

Abstract

Predicate abstraction is a powerful technique to reduce the state space of a program to a finite and affordable number of states. It produces a conservative over-approximation where concrete states are grouped together according to a given set of predicates. A precise abstraction contains the minimal set of transitions with regard to the predicates, but as a result is computationally expensive. Most model checkers therefore approximate the abstraction to alleviate the computation of the abstract system by trading off precision with cost. However, approximation results in a higher number of refinement iterations, since it can produce more false counterexamples than its precise counterpart. The refinement loop can become prohibitively expensive for large programs. This paper proposes a new approach that employs both precise (slow) and approximated (fast) abstraction techniques within one abstraction-refinement loop. It allows computing the abstraction quickly, but keeps it precise enough to avoid too many refinement iterations. We implemented the new algorithm in a state-of-the-art software model checker. Our tests with various real-life benchmarks show that the new approach almost systematically outperforms both precise and imprecise techniques.

This is a preview of subscription content, access via your institution.

References

  1. 1

    https://www.isc.org/software/inn

  2. 2

    Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining approximations in software predicate abstraction. In: TACAS 388–403 (2004)

  3. 3

    Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: PLDI 203–213 (2001)

  4. 4

    Ball T., Podelski A., Rajamani S.K.: Boolean and Cartesian abstraction for model checking C programs. STTT 5(1), 49–58 (2003)

    Google Scholar 

  5. 5

    Ball, T., Rajamani, S.K.: Boolean programs: A model and process for software analysis. Technical report 2000–2014, Microsoft research, February (2000)

  6. 6

    Ball, T., Rajamani, S.K.: Generating abstract explanations of spurious counterexamples in C programs. Technical report 2002–2009, Microsoft research, September (2002)

  7. 7

    Braghin, C., Sharygina, N., Barone-Adesi, K.: Automated verification of security policies in mobile code. In: Davies, J., Gibbons, J., (eds) IFM. volume 4591 of Lecture Notes in Computer Science. Springer, Berlin, pp. 37–53 (2007)

  8. 8

    Bryant R. E.: Graph-based algorithms for boolean function manipulation. IEEE Trans Comput C-35(8), 677–691 (1986)

    Article  Google Scholar 

  9. 9

    Burch J.R., Clarke E.M., McMillan K.L., Dill D.L., Hwang L.J.: Symbolic model checking: 1020 states and beyond. Inf. Comput. 98(2), 142–170 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10

    Cavada, R., Cimatti, A., Franzén, A., Kalyanasundaram, K., Roveri, M., Shyamasundar, R. K.: Computing predicate abstractions by integrating BDDs and SMT solvers. In: FMCAD IEEE, pp. 69–76 (2007)

  11. 11

    Clarke, E., Talupur, M., Veith, H., Wang, D.: SAT based predicate abstraction for hardware verification. In: SAT (2003)

  12. 12

    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: CAV, pp. 154–169 (2000)

  13. 13

    Clarke E.M., Grumberg O., Long D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

    Article  Google Scholar 

  14. 14

    Clarke, E.M., Gupta, A., Kukula, J.H., Strichman, O.: SAT based abstraction-refinement using ILP and machine learning techniques. In: CAV, pp. 265–279 (2002)

  15. 15

    Clarke E.M., Kroening D., Sharygina N., Yorav K.: Predicate abstraction of ANSI-C programs using SAT. Formal methods in system design 25(2–3), 105–127 (2004)

    MATH  Article  Google Scholar 

  16. 16

    Colón, M., Uribe, T.E.: Generating finite-state abstractions of reactive systems using decision procedures. In: CAV, pp. 293–304 (1998)

  17. 17

    Das, S., Dill, D.L.: Successive approximation of abstract transition relations. In: LICS, pp. 51–60 (2001)

  18. 18

    Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: CAV (1999)

  19. 19

    Eén, N., Sörensson, N., An extensible sat-solver. In: SAT, pp. 502–518 (2003)

  20. 20

    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: CAV, pp. 72–83 (1997)

  21. 21

    Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking. In: CAV, pp. 112–124 (2005)

  22. 22

    Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL, pp. 232–244 (2004)

  23. 23

    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In POPL, pp. 58–70 (2002)

  24. 24

    Jain, H., Kroening, D., Sharygina, N., Clarke, E.M.: Word level predicate abstraction and refinement for verifying RTL verilog. In: DAC, pp. 445–450 (2005)

  25. 25

    Jain, H., Ivancic, F., Gupta, A., Ganai, M. K.: Localization and register sharing for predicate abstraction. In: TACAS, pp. 397–412 (2005)

  26. 26

    Jhala, R., McMillan, K.L.: Interpolant-based transition relation approximation. In: CAV, pp. 39–51 (2005)

  27. 27

    Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refinement. In: TACAS, pp. 459–473 (2006)

  28. 28

    Ku, K., Hart, T. E., Chechik, M., Lie, D.: A buffer overflow benchmark for software model checkers. In: ASE ’07 ACM Press, pp. 389–392 (2007)

  29. 29

    Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision procedures. Log. Methods Comput. Sci. 3(2) (2007)

  30. 30

    Lahiri, S.K., Nieuwenhuis, R., Oliveras, A.: SMT techniques for fast predicate abstraction. In: CAV. LNCS, Springer, Berlin, pp. 424–437 (2006)

  31. 31

    McMillan, K.L.: Lazy abstraction with interpolants. In: CAV, pp. 123–136 (2006)

  32. 32

    McMillan, K.L.: Applying SAT methods in unbounded symbolic model checking. In: CAV, pp. 250–264 (2002)

  33. 33

    Nielson F., Nielson H. R., Hankin C. L.: Principles of Program Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  34. 34

    Sharygina, N., Tonetta, S., Tsitovich, A.: The synergy of precise and fast abstractions for program verification. In: 24th annual ACM symposium on applied computing. Honolulu, Hawaii, USA, ACM (2009)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Aliaksei Tsitovich.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharygina, N., Tonetta, S. & Tsitovich, A. An abstraction refinement approach combining precise and approximated techniques. Int J Softw Tools Technol Transfer 14, 1–14 (2012). https://doi.org/10.1007/s10009-011-0185-y

Download citation

Keywords

  • Predicate abstraction
  • Precise abstraction
  • Approximated abstraction
  • CEGAR