Abstract
Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression is computed. Afterwards, this expression is evaluated to a closed form function representing the reachability probability. This paper investigates how this idea can be turned into an effective procedure. It turns out that the bottleneck lies in the growth of the regular expression relative to the number of states (n Θ(log n)). We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids this blow up in most practical cases. We give a detailed account of the approach, also extending to parametric models with rewards and with non-determinism. Experimental evidence is provided, illustrating that our implementation provides meaningful insights on non-trivial models.
Similar content being viewed by others
References
Abbott, J.: The design of CoCoALib. In: ICMS, pp. 205–215 (2006)
Baier C., Ciesinski F., Größer M.: ProbMela and verification of Markov decision processes. SIGMETRICS 32(4), 22–27 (2005)
Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: CAV, pp. 119–130 (1997)
Baier C., Katoen J.-P., Hermanns H., Wolf V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)
Bianco A., de Alfaro L.: Model checking of probabilistic and nondeterministic systems. FSTTCS 15, 499–513 (1995)
Bohnenkamp, H.C., van der Stok, P., Hermanns, H., Vaandrager, F.W.: Cost-optimization of the IPv4 zeroconf protocol. In: DSN, pp. 531–540 (2003)
Brzozowski J.A., Mccluskey E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electron. Comp. EC 12, 67–76 (1963)
Chatterjee, K., Henzinger, T., Sen, K.: Model-checking omega-regular properties of interval Markov chains. In: FoSSaCS, pp. 302–317 (2008)
Damman, B., Han, T., Katoen, J.-P.: Regular expressions for PCTL counterexamples. In: QEST (2008)
Daws, C.: Symbolic and parametric model checking of discrete-time Markov Chains. In: ICTAC, pp. 280–294 (2004)
Derisavi S., Hermanns H., Sanders W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)
Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic Systems. In: SPIN, pp. 71–88 (2006)
Geddes K.O., Czapor S.R., Labahn G.: Algorithms for Computer Algebra. Kluwer, Dordrecht (1992)
Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communication complexity. In: FoSSaCS, pp. 273–286 (2008)
Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric Markov models. In: CAV, 2010 (to appear)
Han, T., Katoen, J.-P., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: RTSS, pp. 173–182 (2008)
Hansson H., Jonsson B.: A logic for reasoning about time and reliability. FAC 6(5), 512–535 (1994)
Helmink, L., Sellink, A., Vaandrager, F.W.: Proof-checking a data link protocol. In: TYPES, vol. 806, pp. 127–165. Springer, Heidelberg (1994)
Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: TACAS, pp. 441–444 (2006)
Hopcroft J.E., Motwani R., Ullman J.D.: Introduction to automata theory, languages, and computation, 2nd edn. SIGACT News 32(1), 60–65 (2001)
Hune T., Romijn J., Stoelinga M., Vaandrager F.W.: Linear parametric model checking of timed automata. J. Log. Algebra Program. 52(53), 183–220 (2002)
Ibe O.C., Trivedi K.S.: Stochastic petri net models of polling systems. IEEE J. Selected Areas Commun. 8(9), 1649–1657 (1990)
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer Society, New York (1991)
Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time markov chains. In: CAV, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)
Kozine I., Utkin L.V.: Interval-valued finite Markov chains. Reliable Comput. 8(2), 97–113 (2002)
Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: SFM, pp. 220–270 (2007)
Lanotte R., Maggiolo-Schettini A., Troina A.: Parametric probabilistic transition systems for system design and analysis. FAC 19(1), 93–109 (2007)
Pnueli A., Zuck L.: Verification of multiprocess probabilistic protocols. Distrib. Comput. 1(1), 53–72 (1986)
Reiter M.K., Rubin A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)
Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of uncertainties. In: TACAS, pp. 394–410 (2006)
Stewart W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)
Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with dynamic balancing of time and space. In: QEST, pp. 65–74 (2008)
Author information
Authors and Affiliations
Corresponding author
Additional information
Part of this work was done while L. Zhang was at Saarland University and Oxford University.
Rights and permissions
About this article
Cite this article
Hahn, E.M., Hermanns, H. & Zhang, L. Probabilistic reachability for parametric Markov models. Int J Softw Tools Technol Transfer 13, 3–19 (2011). https://doi.org/10.1007/s10009-010-0146-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10009-010-0146-x