Skip to main content
Log in

Probabilistic reachability for parametric Markov models

  • SPIN 09
  • Published:
International Journal on Software Tools for Technology Transfer Aims and scope Submit manuscript

Abstract

Given a parametric Markov model, we consider the problem of computing the rational function expressing the probability of reaching a given set of states. To attack this principal problem, Daws has suggested to first convert the Markov chain into a finite automaton, from which a regular expression is computed. Afterwards, this expression is evaluated to a closed form function representing the reachability probability. This paper investigates how this idea can be turned into an effective procedure. It turns out that the bottleneck lies in the growth of the regular expression relative to the number of states (n Θ(log n)). We therefore proceed differently, by tightly intertwining the regular expression computation with its evaluation. This allows us to arrive at an effective method that avoids this blow up in most practical cases. We give a detailed account of the approach, also extending to parametric models with rewards and with non-determinism. Experimental evidence is provided, illustrating that our implementation provides meaningful insights on non-trivial models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbott, J.: The design of CoCoALib. In: ICMS, pp. 205–215 (2006)

  2. Baier C., Ciesinski F., Größer M.: ProbMela and verification of Markov decision processes. SIGMETRICS 32(4), 22–27 (2005)

    Article  Google Scholar 

  3. Baier, C., Hermanns, H.: Weak bisimulation for fully probabilistic processes. In: CAV, pp. 119–130 (1997)

  4. Baier C., Katoen J.-P., Hermanns H., Wolf V.: Comparative branching-time semantics for Markov chains. Inf. Comput. 200(2), 149–214 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bianco A., de Alfaro L.: Model checking of probabilistic and nondeterministic systems. FSTTCS 15, 499–513 (1995)

    Google Scholar 

  6. Bohnenkamp, H.C., van der Stok, P., Hermanns, H., Vaandrager, F.W.: Cost-optimization of the IPv4 zeroconf protocol. In: DSN, pp. 531–540 (2003)

  7. Brzozowski J.A., Mccluskey E.J.: Signal flow graph techniques for sequential circuit state diagrams. IEEE Trans. Electron. Comp. EC 12, 67–76 (1963)

    Article  MATH  Google Scholar 

  8. Chatterjee, K., Henzinger, T., Sen, K.: Model-checking omega-regular properties of interval Markov chains. In: FoSSaCS, pp. 302–317 (2008)

  9. Damman, B., Han, T., Katoen, J.-P.: Regular expressions for PCTL counterexamples. In: QEST (2008)

  10. Daws, C.: Symbolic and parametric model checking of discrete-time Markov Chains. In: ICTAC, pp. 280–294 (2004)

  11. Derisavi S., Hermanns H., Sanders W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic Systems. In: SPIN, pp. 71–88 (2006)

  13. Geddes K.O., Czapor S.R., Labahn G.: Algorithms for Computer Algebra. Kluwer, Dordrecht (1992)

    Book  MATH  Google Scholar 

  14. Gruber, H., Johannsen, J.: Optimal lower bounds on regular expression size using communication complexity. In: FoSSaCS, pp. 273–286 (2008)

  15. Hahn, E.M., Hermanns, H., Wachter, B., Zhang, L.: PARAM: a model checker for parametric Markov models. In: CAV, 2010 (to appear)

  16. Han, T., Katoen, J.-P., Mereacre, A.: Approximate parameter synthesis for probabilistic time-bounded reachability. In: RTSS, pp. 173–182 (2008)

  17. Hansson H., Jonsson B.: A logic for reasoning about time and reliability. FAC 6(5), 512–535 (1994)

    Article  MATH  Google Scholar 

  18. Helmink, L., Sellink, A., Vaandrager, F.W.: Proof-checking a data link protocol. In: TYPES, vol. 806, pp. 127–165. Springer, Heidelberg (1994)

  19. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: a tool for automatic verification of probabilistic systems. In: TACAS, pp. 441–444 (2006)

  20. Hopcroft J.E., Motwani R., Ullman J.D.: Introduction to automata theory, languages, and computation, 2nd edn. SIGACT News 32(1), 60–65 (2001)

    Article  Google Scholar 

  21. Hune T., Romijn J., Stoelinga M., Vaandrager F.W.: Linear parametric model checking of timed automata. J. Log. Algebra Program. 52(53), 183–220 (2002)

    Article  MathSciNet  Google Scholar 

  22. Ibe O.C., Trivedi K.S.: Stochastic petri net models of polling systems. IEEE J. Selected Areas Commun. 8(9), 1649–1657 (1990)

    Article  Google Scholar 

  23. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer Society, New York (1991)

  24. Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time markov chains. In: CAV, vol. 4590, pp. 311–324. Springer, Heidelberg (2007)

  25. Kozine I., Utkin L.V.: Interval-valued finite Markov chains. Reliable Comput. 8(2), 97–113 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  26. Kwiatkowska, M.Z., Norman, G., Parker, D.: Stochastic model checking. In: SFM, pp. 220–270 (2007)

  27. Lanotte R., Maggiolo-Schettini A., Troina A.: Parametric probabilistic transition systems for system design and analysis. FAC 19(1), 93–109 (2007)

    Article  MATH  Google Scholar 

  28. Pnueli A., Zuck L.: Verification of multiprocess probabilistic protocols. Distrib. Comput. 1(1), 53–72 (1986)

    Article  MATH  Google Scholar 

  29. Reiter M.K., Rubin A.D.: Crowds: anonymity for web transactions. ACM Trans. Inf. Syst. Secur. 1(1), 66–92 (1998)

    Article  Google Scholar 

  30. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the presence of uncertainties. In: TACAS, pp. 394–410 (2006)

  31. Stewart W.J.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  32. Wimmer, R., Derisavi, S., Hermanns, H.: Symbolic partition refinement with dynamic balancing of time and space. In: QEST, pp. 65–74 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Moritz Hahn.

Additional information

Part of this work was done while L. Zhang was at Saarland University and Oxford University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hahn, E.M., Hermanns, H. & Zhang, L. Probabilistic reachability for parametric Markov models. Int J Softw Tools Technol Transfer 13, 3–19 (2011). https://doi.org/10.1007/s10009-010-0146-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10009-010-0146-x

Keywords

Navigation