Skip to main content
Log in

Solution thermolysed tungsten oxide-based electrochromic devices: thickness-dependent step potential analysis

  • Short Communication
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract.

The characterisation of electrochemical behaviour of electrochromic (EC) devices based on solution thermolysed (ST) tungsten oxide (WO3) thin films was carried out using the step potential excitation method. The method, based on generating plots of current density (J) as a function of passed charge (ΔQ), has been applied for the characterisation of EC-WO3 thin films in proton-containing aqueous electrolyte. EC devices have been fabricated by employing WO3 thin films with variable thickness (T) ranging from 0.04 to 0.52 µm. The J vs time (t) responses (chronoamperometry) of these devices were recorded at a fixed applied potential (±0.7 V vs S.C.E.) and values of total passed H+ charges (ΔQ) into the WO3 host lattice during the coloration process are calculated. The J-ΔQ curves corresponding to films of different thickness were plotted as a function of the passed charge volume density, ΔQ /T, and an intercalatable film thickness is calculated to be 0.13 µm. The modulation in optical transmittance after coloration and bleaching was studied in the wavelength range between 350 and 850 nm and an optical efficiency (ξλ) is calculated at λ=700 nm. It is found that the ξλ wanes with increasing intercalation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Electronic Publication

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, P. Solution thermolysed tungsten oxide-based electrochromic devices: thickness-dependent step potential analysis. J Solid State Electrochem 6, 284–287 (2002). https://doi.org/10.1007/s100080100232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100080100232

Navigation