Skip to main content
Log in

“Contemporary neoteric energy materials to enhance efficiency and stability of perovskite solar cells: a review”

  • Review Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Perovskite solar cells (PSCs) have garnered significant interest in recent years due to their high energy conversion efficiency, unique properties, low cost, and simplified fabrication process. However, the reactivity of these devices to external factors such as moisture, water, and UV light presents significant challenges for their commercial viability, potentially compromising their long-term stability and functionality. To overcome these limitations, researchers have focused on two primary strategies: surface passivation and additive engineering. Recent research developments have shown that surface passivation and additive engineering using conducting polymers (CPs), metal-organic framework materials (MOFs), and inorganic additives have significantly improved the operability of perovskite solar cells (PSCs). CPs form resilient interactions with perovskite grains, enhancing film stability through cross-link bonds. MOFs possess a unique network of functional holes that interact with multiple perovskite layers, maintaining morphology and improving interlayer charge transport. Inorganic additives suppress defects at grain boundaries, promoting the formation and growth of perovskite absorbers while providing mechanical protection. These advancements contribute to overcoming the reactivity limitations of PSCs and bring us closer to the commercialization of this technology. The review focuses on the advancements in similar materials, their passivation principles, and the resulting effects on PSC performance. Key aspects covered include the device structure, targeted defects, passivation processes, and synthesis outcomes. By providing a comprehensive overview, the review aims to assist in the selection and synthesis of novel materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15FF

Similar content being viewed by others

Data and code availability

Not applicable.

References

  1. Jeong J, Kim M, Seo J, Lu H, Ahlawat P, Mishra A, Yang Y, Hope MA, Eickemeyer FT, Kim M, Yoon YJ, Choi IW, Darwich BP, Choi SJ, Jo Y, Lee JH, Walker B, Zakeeruddin SM, Emsley L, Rothlisberger U, Hagfeldt A, Kim DS, Grätzel M, Kim JY (2021) Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature 592(7854):381–385. https://doi.org/10.1038/s41586-021-03406-5

    Article  CAS  PubMed  Google Scholar 

  2. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok S Il (2015) High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science (1979) 348(6240):1234–1237. https://doi.org/10.1126/science.aaa9272

    Article  CAS  Google Scholar 

  3. Burschka J, Pellet N, Moon S-J, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M (2013) Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458):316–319. https://doi.org/10.1038/nature12340

    Article  CAS  PubMed  Google Scholar 

  4. Chen W, Wu Y, Yue Y, Liu J, Zhang W, Yang X, Chen H, Bi E, Ashraful I, Grätzel M, Han L (2015) Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science  (1979) 350(6263):944–948. https://doi.org/10.1126/science.aad1015

    Article  CAS  Google Scholar 

  5. Yin W-J, Shi T, Yan Y (2014) Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv Mater 26(27):4653–4658. https://doi.org/10.1002/adma.201306281

    Article  CAS  PubMed  Google Scholar 

  6. Cheng X, Yang S, Cao B, Tao X, Chen Z (2020) Single crystal perovskite solar cells: development and perspectives. Adv Funct Mater Wiley-VCH Verlag. https://doi.org/10.1002/adfm.201905021

    Article  Google Scholar 

  7. Huang J, Yuan Y, Shao Y, Yan Y (2017) Understanding the physical properties of hybrid perovskites for photovoltaic applications. Nat Rev Mater 2(7):17042. https://doi.org/10.1038/natrevmats.2017.42

    Article  CAS  Google Scholar 

  8. Huang J, Shao Y, Dong Q (2015) Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond? J Phys Chem Lett 6(16):3218–3227. https://doi.org/10.1021/acs.jpclett.5b01419

    Article  CAS  Google Scholar 

  9. Saki Z, Byranvand MM, Taghavinia N, Kedia M, Saliba M (2021) Solution-processed perovskite thin-films: the journey from lab- to large-scale solar cells. Energy Environ Sci 14(11):5690–5722. https://doi.org/10.1039/D1EE02018H

    Article  CAS  Google Scholar 

  10. Razza S, Castro-Hermosa S, Di Carlo A, Brown TM (2016) Research update: large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Mater 4(9):091508. https://doi.org/10.1063/1.4962478

    Article  CAS  Google Scholar 

  11. Cai M, Wu Y, Chen H, Yang X, Qiang Y, Han L (2017) Cost-performance analysis of perovskite solar modules. Adv Sci 4(1):1600269. https://doi.org/10.1002/advs.201600269

    Article  CAS  Google Scholar 

  12. Li Z, Zhao Y, Wang X, Sun Y, Zhao Z, Li Y, Zhou H, Chen Q (2018) Cost analysis of perovskite tandem photovoltaics. Joule 2(8):1559–1572. https://doi.org/10.1016/j.joule.2018.05.001

    Article  CAS  Google Scholar 

  13. Niu G, Guo X, Wang L (2015) Review of recent progress in chemical stability of perovskite solar cells. J Mater Chem A Mater 3(17):8970–8980. https://doi.org/10.1039/c4ta04994b

    Article  CAS  Google Scholar 

  14. Agiorgousis ML, Sun Y-Y, Zeng H, Zhang S (2014) Strong covalency-induced recombination centers in perovskite solar cell material CH 3 NH 3 PbI 3. J Am Chem Soc 136(41):14570–14575. https://doi.org/10.1021/ja5079305

    Article  CAS  PubMed  Google Scholar 

  15. Yin W-J, Shi T, Yan Y (2014) Unusual defect physics in CH 3 NH 3 PbI 3 perovskite solar cell absorber. Appl Phys Lett 104(6):063903. https://doi.org/10.1063/1.4864778

    Article  CAS  Google Scholar 

  16. Steirer KX, Schulz P, Teeter G, Stevanovic V, Yang M, Zhu K, Berry JJ (2016) Defect tolerance in methylammonium lead triiodide perovskite. ACS Energy Lett 1(2):360–366. https://doi.org/10.1021/acsenergylett.6b00196

    Article  CAS  Google Scholar 

  17. Walsh A, Scanlon DO, Chen S, Gong XG, Wei S (2015) Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew Chem Int Ed 54(6):1791–1794. https://doi.org/10.1002/anie.201409740

    Article  CAS  Google Scholar 

  18. Kim J, Lee S-H, Lee JH, Hong K-H (2014) The role of intrinsic defects in methylammonium lead iodide perovskite. J Phys Chem Lett 5(8):1312–1317. https://doi.org/10.1021/jz500370k

    Article  CAS  PubMed  Google Scholar 

  19. Ball JM, Petrozza A (2016) Defects in perovskite-halides and their effects in solar cells. Nat Energy 1(11):16149. https://doi.org/10.1038/nenergy.2016.149

    Article  CAS  Google Scholar 

  20. Stranks SD (2017) Nonradiative losses in metal halide perovskites. ACS Energy Lett 2(7):1515–1525. https://doi.org/10.1021/acsenergylett.7b00239

    Article  CAS  Google Scholar 

  21. Li N, Niu X, Chen Q, Zhou H (2020) Towards commercialization: the operational stability of perovskite solar cells. Chem Soc Rev 49(22):8235–8286. https://doi.org/10.1039/d0cs00573h

    Article  CAS  PubMed  Google Scholar 

  22. Mahapatra A, Prochowicz D, Tavakoli MM, Trivedi S, Kumar P, Yadav P (2020) A review of aspects of additive engineering in perovskite solar cells. J Mater Chem A Mater 8(1):27–54. https://doi.org/10.1039/C9TA07657C

    Article  CAS  Google Scholar 

  23. Jiang Q, Zhao Y, Zhang X, Yang X, Chen Y, Chu Z, Ye Q, Li X, Yin Z, You J (2019) Surface passivation of perovskite film for efficient solar cells. Nat Photonics 13(7):460–466. https://doi.org/10.1038/s41566-019-0398-2

    Article  CAS  Google Scholar 

  24. Patel SB, Gohel JV (2018) Optimization of sol–gel spin-coated Cu2ZnSnS4 (CZTS) thin-film control parameters by RSM method to enhance the solar cell performance. J Mater Sci 53:12203–12213. https://doi.org/10.1007/s10853-018-2464-4

    Article  CAS  Google Scholar 

  25. Patel SB, Gohel JV (2018) Synthesis of novel counter electrode by combination of mesoporous–macroporous CZTS films for enhanced performance of quantum-dots sensitized solar cells. J Mater Sci Mater Electron 29(21):18151–18158

    Article  CAS  Google Scholar 

  26. Kumari N, Patel SR, Gohel JV (2020) Optimization of MAPbI3 film using response surface methodology for enhancement in photovoltaic performance. In: L Ledwani, JS Sangwai (eds.) Nanotechnology for Energy and Environmental Engineering- Part of the Green Energy and Technology book series. Springer International Publishing, pp 395-412.

  27. Nair S, Gohel JV (2021) Impact of stress testing and passivation strategies on low-cost carbon-based perovskite solar cell under ambient conditions. Opt Mater 117:111214. https://doi.org/10.1016/j.optmat.2021.111214

    Article  CAS  Google Scholar 

  28. Nair S, Gohel JV (2021) Introduction of P3HT-based gradient heterojunction layer to improve optoelectronic performance of low-cost carbon-based perovskite solar cell. Opt Mater 119:111366. https://doi.org/10.1016/j.optmat.2021.111366

    Article  CAS  Google Scholar 

  29. Khare S, Gohel JV (2022) Performance enhancement of cost-effective mixed cationic perovskite solar cell with MgCl2 and n-BAI as surface passivating agents. Opt Mater 132:112845. https://doi.org/10.1016/j.optmat.2022.112845

    Article  CAS  Google Scholar 

  30. Kulkarni S, Gupta S, Gohel JV (2023) Incorporation of MOF UiO-66-NH2 and polyaniline for enhanced performance of low-cost carbon-based perovskite solar cells. Opt Mater 144:114268. https://doi.org/10.1016/j.optmat.2023.114268

    Article  CAS  Google Scholar 

  31. Zhang Z, Qiao L, Meng K, Long R, Chen G, Gao P (2023) Rationalization of passivation strategies toward high-performance perovskite solar cells. Chem Soc Rev 52(1):163–195. https://doi.org/10.1039/D2CS00217E

    Article  CAS  PubMed  Google Scholar 

  32. Mohd Yusoff bin Adb R, Vasilopoulou M, Georgiadou DG, Palilis LC, Abate A, Nazeeruddin MK (2021) Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ Sci 14(5):2906–2953. https://doi.org/10.1039/D1EE00062D

    Article  CAS  Google Scholar 

  33. Yang R, Ji Y, Li Q, Zhao Z, Zhang R, Liang L, Liu F, Chen Y, Han S, Yu X, Liu H (2019) Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance. Appl Catal B 256:117798. https://doi.org/10.1016/j.apcatb.2019.117798

    Article  CAS  Google Scholar 

  34. Zhao J, Liu F, Wang W, Wang Y, Wen N, Zhang Z, Dai W, Yuan R, Ding Z, Long J (2023) S-scheme-heterojunction LaNiO 3 /CdLa 2 S 4 photocatalyst for solar-driven CO 2 -to-CO conversion. ACS Appl Nano Mater 6(10):8927–8936. https://doi.org/10.1021/acsanm.3c01443

    Article  CAS  Google Scholar 

  35. Zhao J, Huang Q, Xie Z, Liu Y, Liu F, Wei F, Wang S, Zhang Z, Yuan R, Wu K, Ding Z, Long J (2023) Hierarchical hollow-TiO 2 @CdS/ZnS hybrid for solar-driven CO 2 -selective conversion. ACS Appl Mater Interfaces 15(20):24494–24503. https://doi.org/10.1021/acsami.3c03255

    Article  CAS  PubMed  Google Scholar 

  36. Zhao J, Huang L, Xue L, Niu Z, Zhang Z, Ding Z, Yuan R, Lu X, Long J (2023) Selectively converting CO2 to HCOOH on Cu-alloys integrated in hematite-driven artificial photosynthetic cells. J Energy Chem 79:601–610. https://doi.org/10.1016/j.jechem.2022.12.062

    Article  CAS  Google Scholar 

  37. Zhao J, Xue L, Niu Z, Huang L, Hou Y, Zhang Z, Yuan R, Ding Z, Fu X, Lu X, Long J (2021) Conversion of CO2 to formic acid by integrated all-solar-driven artificial photosynthetic system. J Power Sources 512:230532. https://doi.org/10.1016/j.jpowsour.2021.230532

    Article  CAS  Google Scholar 

  38. Das TK, Prusty S (2012) Review on conducting polymers and their applications. Polym Plast Technol Eng 51(14):1487–1500. https://doi.org/10.1080/03602559.2012.710697

    Article  CAS  Google Scholar 

  39. Umoren SA, Solomon MM, Saji VS (2022) Conducting polymers. In: Polymeric materials in corrosion inhibition. Elsevier, pp 443–466. https://doi.org/10.1016/B978-0-12-823854-7.00002-3

    Chapter  Google Scholar 

  40. Nalwa H (2000) Index for volume 5. In: Handbook of Nanostructured Materials and Nanotechnology. Elsevier, pp 769–778. https://doi.org/10.1016/B978-012513760-7/50070-8

    Chapter  Google Scholar 

  41. Naarmann H (2000) Polymers, electrically conducting. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co, Weinheim, Germany. https://doi.org/10.1002/14356007.a21_429

    Chapter  Google Scholar 

  42. K, N., Rout, C. S. (2021) Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 11(10):5659–5697. https://doi.org/10.1039/D0RA07800J

    Article  PubMed  Google Scholar 

  43. Han T-H, Lee J-W, Choi C, Tan S, Lee C, Zhao Y, Dai Z, De Marco N, Lee S-J, Bae S-H, Yuan Y, Lee HM, Huang Y, Yang Y (2019) Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat Commun 10(1):520. https://doi.org/10.1038/s41467-019-08455-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Brédas J-L, Beljonne D, Coropceanu V, Cornil J (2004) Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem Rev 104(11):4971–5004. https://doi.org/10.1021/cr040084k

    Article  CAS  PubMed  Google Scholar 

  45. Yan W, Li Y, Li Y, Ye S, Liu Z, Wang S, Bian Z, Huang C (2015) High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy 16:428–437. https://doi.org/10.1016/j.nanoen.2015.07.024

    Article  CAS  Google Scholar 

  46. Darmanin T, Guittard F (2014) Wettability of conducting polymers: from superhydrophilicity to superoleophobicity. Prog Polym Sci 39(4):656–682. https://doi.org/10.1016/j.progpolymsci.2013.10.003

    Article  CAS  Google Scholar 

  47. Eperon GE, Stranks SD, Menelaou C, Johnston MB, Herz LM, Snaith HJ (2014) Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ Sci 7(3):982. https://doi.org/10.1039/c3ee43822h

    Article  CAS  Google Scholar 

  48. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok S Il (2014) Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat Mater 13(9):897–903. https://doi.org/10.1038/nmat4014

    Article  CAS  PubMed  Google Scholar 

  49. Tidhar Y, Edri E, Weissman H, Zohar D, Hodes G, Cahen D, Rybtchinski B, Kirmayer S (2014) Crystallization of methyl ammonium lead halide perovskites: implications for photovoltaic applications. J Am Chem Soc 136(38):13249–13256. https://doi.org/10.1021/ja505556s

    Article  CAS  PubMed  Google Scholar 

  50. Bi D, Yi C, Luo J, Décoppet J-D, Zhang F, Zakeeruddin SM, Li X, Hagfeldt A, Grätzel M (2016) Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat Energy 1(10):16142. https://doi.org/10.1038/nenergy.2016.142

    Article  CAS  Google Scholar 

  51. Peng J, Khan JI, Liu W, Ugur E, Duong T, Wu Y, Shen H, Wang K, Dang H, Aydin E, Yang X, Wan Y, Weber KJ, Catchpole KR, Laquai F, Wolf S, White TP (2018) A universal double-side passivation for high open-circuit voltage in perovskite solar cells: role of carbonyl groups in poly(methyl methacrylate). Adv Energy Mater 8(30):1801208. https://doi.org/10.1002/aenm.201801208

    Article  CAS  Google Scholar 

  52. Bischak CG, Sanehira EM, Precht JT, Luther JM, Ginsberg NS (2015) Heterogeneous charge carrier dynamics in organic–inorganic hybrid materials: nanoscale lateral and depth-dependent variation of recombination rates in methylammonium lead halide perovskite thin films. Nano Lett 15(7):4799–4807. https://doi.org/10.1021/acs.nanolett.5b01917

    Article  CAS  PubMed  Google Scholar 

  53. Lee J-W, Bae S-H, Hsieh Y-T, De Marco N, Wang M, Sun P, Yang Y (2017) A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3(2):290–302. https://doi.org/10.1016/j.chempr.2017.05.020

    Article  CAS  Google Scholar 

  54. Brenes R, Guo D, Osherov A, Noel NK, Eames C, Hutter EM, Pathak SK, Niroui F, Friend RH, Islam MS, Snaith HJ, Bulović V, Savenije TJ, Stranks SD (2017) Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule 1(1):155–167. https://doi.org/10.1016/j.joule.2017.08.006

    Article  CAS  Google Scholar 

  55. Kim K, Han J, Maruyama S, Balaban M, Jeon I (2021) Role and contribution of polymeric additives in perovskite solar cells: crystal growth templates and grain boundary passivators. Solar RRL 5(5):2000783. https://doi.org/10.1002/solr.202000783

    Article  CAS  Google Scholar 

  56. Firda PBD, Malik YT, Oh JK, Wujcik EK, Jeon J-W (2021) Enhanced chemical and electrochemical stability of polyaniline-based layer-by-layer films. Polymers (Basel) 13(17):2992. https://doi.org/10.3390/polym13172992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Araujo JR, Lopes ES, de Castro RK, Senna CA, de Robertis E, Neves RS, Fragneaud B, Nykänen A, Kuznetsov A, Archanjo BS, De Paoli MA (2018) Chapter 8 - characterization of polyaniline-based blends, composites, and nanocomposites, editor(s): P.M. Visakh, Cristina Della Pina, Ermelinda Falletta, Polyaniline Blends, Composites, and Nanocomposites, Elsevier, 209–233, ISBN 9780128095515. https://doi.org/10.1016/B978-0-12-809551-5.00008-4

  58. Beygisangchin M, Abdul Rashid S, Shafie S, Sadrolhosseini AR, Lim HN (2021) Preparations, properties, and applications of polyaniline and polyaniline thin films—a review. Polymers (Basel) 13(12):2003. https://doi.org/10.3390/polym13122003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim DI, Lee JW, Jeong RH, Boo J-H (2022) A high-efficiency and stable perovskite solar cell fabricated in ambient air using a polyaniline passivation layer. Sci Rep 12(1):697. https://doi.org/10.1038/s41598-021-04547-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Naji AM, Kareem SH, Faris AH, Mohammed MKA (2021) Polyaniline polymer-modified ZnO electron transport material for high-performance planar perovskite solar cells. Ceram Int 47(23):33390–33397. https://doi.org/10.1016/j.ceramint.2021.08.244

    Article  CAS  Google Scholar 

  61. Zheng H, Xu X, Xu S, Liu G, Chen S, Zhang X, Chen T, Pan X (2019) The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells. J Mater Chem C Mater 7(15):4441–4448. https://doi.org/10.1039/C8TC05975F

    Article  CAS  Google Scholar 

  62. Mei Y, Shen Z, Kundu S, Dennis E, Pang S, Tan F, Yue G, Gao Y, Dong C, Liu R, Zhang W, Saidaminov MI (2021) Perovskite solar cells with polyaniline hole transport layers surpassing a 20% power conversion efficiency. Chem Mater 33(12):4679–4687. https://doi.org/10.1021/acs.chemmater.1c01176

    Article  CAS  Google Scholar 

  63. Abdelmagid A, El Tahan A, Habib M, Anas M, Soliman M (2020) Effect of different ratios of polyaniline:poly(styrene sulfonate) on the hole extraction ability in perovskite solar cells. Synth Met 259:116232. https://doi.org/10.1016/j.synthmet.2019.116232

    Article  CAS  Google Scholar 

  64. Lee K, Yu H, Lee JW, Oh J, Bae S, Kim SK, Jang J (2018) Efficient and moisture-resistant hole transport layer for inverted perovskite solar cells using solution-processed polyaniline. J Mater Chem C Mater 6(23):6250–6256. https://doi.org/10.1039/C8TC01870G

    Article  CAS  Google Scholar 

  65. Lim K-G, Ahn S, Kim H, Choi M-R, Huh DH, Lee T-W (2016) Self-doped conducting polymer as a hole-extraction layer in organic-inorganic hybrid perovskite solar cells. Adv Mater Interfaces 3(9):1500678. https://doi.org/10.1002/admi.201500678

    Article  CAS  Google Scholar 

  66. Chen J-Y, Yu M-H, Chang S-F, Wen Sun K (2013) Highly efficient poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si hybrid solar cells with imprinted nanopyramid structures. Appl Phys Lett 103(13):133901. https://doi.org/10.1063/1.4822116

    Article  CAS  Google Scholar 

  67. Lakdusinghe M, Abbaszadeh M, Mishra S, Sengottuvelu D, Wijayapala R, Zhang S, Benasco AR, Gu X, Morgan SE, Wipf DO, Kundu S (2021) Nanoscale self-assembly of poly(3-hexylthiophene) assisted by a low-molecular-weight gelator toward large-scale fabrication of electrically conductive networks. ACS Appl Nano Mater 4(8):8003–8014. https://doi.org/10.1021/acsanm.1c01294

    Article  CAS  Google Scholar 

  68. Zhang S, Yan H, Yeh J, Shi X, Zhang P (2019) Electroactive composite of FeCl 3 -doped P3HT/PLGA with adjustable electrical conductivity for potential application in neural tissue engineering. Macromol Biosci 19(10):1900147. https://doi.org/10.1002/mabi.201900147

    Article  CAS  Google Scholar 

  69. Tang K, Huang L, Lim J, Zaveri T, Azoulay JD, Guo S (2019) Chemical doping of well-dispersed P3HT thin-film nanowire networks. ACS Appl Polym Mater 1(11):2943–2950. https://doi.org/10.1021/acsapm.9b00653

    Article  CAS  Google Scholar 

  70. Sharma T, Singhal R, Vishnoi R, Lakshmi GBVS, Chand S, Avasthi DK, Kanjilal A, Biswas SK (2017) Ion irradiation induced modifications of P3HT: a donor material for organic photovoltaic devices. Vacuum 135:73–85. https://doi.org/10.1016/j.vacuum.2016.10.027

    Article  CAS  Google Scholar 

  71. Hai TAP, Sugimoto R (2018) Surface functionalization of cellulose with poly(3-hexylthiophene) via novel oxidative polymerization. Carbohydr Polym 179:221–227. https://doi.org/10.1016/j.carbpol.2017.09.067

    Article  CAS  PubMed  Google Scholar 

  72. Mehmood U, Al-Ahmed A, Hussein IA (2016) Review on recent advances in polythiophene based photovoltaic devices. Renew Sustain Energy Rev 57:550–561. https://doi.org/10.1016/j.rser.2015.12.177

    Article  CAS  Google Scholar 

  73. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100(7):2537–2574. https://doi.org/10.1021/cr9801014

    Article  CAS  PubMed  Google Scholar 

  74. Nielsen CB, McCulloch I (2013) Recent advances in transistor performance of polythiophenes. Prog Polym Sci 38(12):2053–2069. https://doi.org/10.1016/j.progpolymsci.2013.05.003

    Article  CAS  Google Scholar 

  75. Xie H, Liu J, Yin X, Guo Y, Liu D, Wang G, Que W (2022) Perovskite/P3HT graded heterojunction by an additive-assisted method for high-efficiency perovskite solar cells with carbon electrodes. Colloids Surf A Physicochem Eng Asp 635:128072. https://doi.org/10.1016/j.colsurfa.2021.128072

    Article  CAS  Google Scholar 

  76. Nair S, Gohel JV (2021) Introduction of P3HT-based gradient heterojunction layer to improve optoelectronic performance of low-cost carbon-based perovskite solar cell. Opt Mater (Amst) 119:111366. https://doi.org/10.1016/j.optmat.2021.111366

    Article  CAS  Google Scholar 

  77. Dicker G, de Haas MP, Siebbeles LDA, Warman JM (2004) Electrodeless time-resolved microwave conductivity study of charge-carrier photogeneration in regioregular poly(3-hexylthiophene) thin films. Phys Rev B 70(4):045203. https://doi.org/10.1103/PhysRevB.70.045203

    Article  CAS  Google Scholar 

  78. Jiang M, Yuan J, Cao G, Tian J (2020) In-situ fabrication of P3HT passivating layer with hole extraction ability for enhanced performance of perovskite solar cell. Chem Eng J 402:126152. https://doi.org/10.1016/j.cej.2020.126152

    Article  CAS  Google Scholar 

  79. Wang G, Dong W, Gurung A, Chen K, Wu F, He Q, Pathak R, Qiao Q (2019) Improving photovoltaic performance of carbon-based CsPbBr 3 perovskite solar cells by interfacial engineering using P3HT interlayer. J Power Sources 432:48–54. https://doi.org/10.1016/j.jpowsour.2019.05.075

    Article  CAS  Google Scholar 

  80. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12(7):481–494. https://doi.org/10.1002/(SICI)1521-4095(200004)12:7%3c481::AID-ADMA481%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  81. Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ (2017) Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev 117(9):6467–6499. https://doi.org/10.1021/acs.chemrev.7b00003

    Article  CAS  PubMed  Google Scholar 

  82. Ha SR, Park S, Oh JT, Kim DH, Cho S, Bae SY, Kang D-W, Kim J-M, Choi H (2018) Water-resistant PEDOT:PSS hole transport layers by incorporating a photo-crosslinking agent for high-performance perovskite and polymer solar cells. Nanoscale 10(27):13187–13193. https://doi.org/10.1039/C8NR02903B

    Article  CAS  PubMed  Google Scholar 

  83. Qi Y, Almtiri M, Giri H, Jha S, Ma G, Shaik AK, Zhang Q, Pradhan N, Gu X, Hammer NI, Patton D, Scott C, Dai Q (2022) Evaluation of the passivation effects of PEDOT:PSS on inverted perovskite solar cells. Adv Energy Mater 12(46):2202713. https://doi.org/10.1002/aenm.202202713

    Article  CAS  Google Scholar 

  84. Karbovnyk I, Olenych I, Aksimentyeva O, Klym H, Dzendzelyuk O, Olenych Y, Hrushetska O (2016) Effect of radiation on the electrical properties of PEDOT-based nanocomposites. Nanoscale Res Lett 11(1):84. https://doi.org/10.1186/s11671-016-1293-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Wu F, Yan K, Wu H, Niu B, Liu Z, Li Y, Zuo L, Chen H (2021) Tuning interfacial chemical interaction for high-performance perovskite solar cell with PEDOT:PSS as hole transporting layer. J Mater Chem A Mater 9(26):14920–14927. https://doi.org/10.1039/D1TA03024H

    Article  CAS  Google Scholar 

  86. Wang M, Wang H, Li W, Hu X, Sun K, Zang Z (2019) Defect passivation using ultrathin PTAA layers for efficient and stable perovskite solar cells with a high fill factor and eliminated hysteresis. J Mater Chem A Mater 7(46):26421–26428. https://doi.org/10.1039/C9TA08314F

    Article  CAS  Google Scholar 

  87. Zhou X, Hu M, Liu C, Zhang L, Zhong X, Li X, Tian Y, Cheng C, Xu B (2019) Synergistic effects of multiple functional ionic liquid-treated PEDOT:PSS and less-ion-defects S-acetylthiocholine chloride-passivated perovskite surface enabling stable and hysteresis-free inverted perovskite solar cells with conversion efficiency over 20%. Nano Energy 63:103866. https://doi.org/10.1016/j.nanoen.2019.103866

    Article  CAS  Google Scholar 

  88. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang H-L (2019) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68. https://doi.org/10.1016/j.mattod.2018.10.038

    Article  CAS  Google Scholar 

  89. Meng W, Kondo S, Ito T, Komatsu K, Pirillo J, Hijikata Y, Ikuhara Y, Aida T, Sato H (2021) An elastic metal–organic crystal with a densely catenated backbone. Nature 598(7880):298–303. https://doi.org/10.1038/s41586-021-03880-x

    Article  CAS  PubMed  Google Scholar 

  90. Dias EM, Petit C (2015) Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J Mater Chem A Mater 3(45):22484–22506. https://doi.org/10.1039/C5TA05440K

    Article  CAS  Google Scholar 

  91. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou H-C (2018) Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21(2):108–121. https://doi.org/10.1016/j.mattod.2017.07.006

    Article  CAS  Google Scholar 

  92. Hu YH, Zhang L (2010) Hydrogen storage in metal-organic frameworks. Adv Mater 22(20):E117–E130. https://doi.org/10.1002/adma.200902096

    Article  CAS  PubMed  Google Scholar 

  93. Wu S, Li Z, Li M-Q, Diao Y, Lin F, Liu T, Zhang J, Tieu P, Gao W, Qi F, Pan X, Xu Z, Zhu Z, Jen AK-Y (2020) 2D metal–organic framework for stable perovskite solar cells with minimized lead leakage. Nat Nanotechnol 15(11):934–940. https://doi.org/10.1038/s41565-020-0765-7

    Article  CAS  PubMed  Google Scholar 

  94. Silva CG, Corma A, García H (2010) Metal–organic frameworks as semiconductors. J Mater Chem 20(16):3141. https://doi.org/10.1039/b924937k

    Article  CAS  Google Scholar 

  95. Cheng W, Zhang H, Luan D, Lou XW (David) (2021) Exposing unsaturated Cu 1 -O 2 sites in nanoscale Cu-MOF for efficient electrocatalytic hydrogen evolution. Sci Adv 7(18):eabg2580. https://doi.org/10.1126/sciadv.abg2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang H, Zou H, Liu Y, Liu Z, Sun W, Lin KA, Li T, Luo S (2021) Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis. Sci Rep 11(1):21414. https://doi.org/10.1038/s41598-021-00776-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sharma A, Lim J, Jeong S, Won S, Seong J, Lee S, Kim YS, Baek SB, Lah MS (2021) Superprotonic conductivity of MOF-808 achieved by controlling the binding mode of grafted sulfamate. Angew Chem Int Ed 60(26):14334–14338. https://doi.org/10.1002/anie.202103191

    Article  CAS  Google Scholar 

  98. Heo DY, Do HH, Ahn SH, Kim SY (2020) Metal-organic framework materials for perovskite solar cells. Polymers (Basel) 12(9):2061. https://doi.org/10.3390/polym12092061

    Article  CAS  PubMed  Google Scholar 

  99. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM (2003) Hydrogen storage in microporous metal-organic frameworks. Science (1979) 300(5622):1127–1129. https://doi.org/10.1126/science.1083440

    Article  CAS  Google Scholar 

  100. Surblé S, Serre C, Mellot-Draznieks C, Millange F, Férey G (2006) A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. Chem Commun 3:284–286. https://doi.org/10.1039/B512169H

    Article  Google Scholar 

  101. Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou H-C (2008) Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J Am Chem Soc 130(3):1012–1016. https://doi.org/10.1021/ja0771639

    Article  CAS  PubMed  Google Scholar 

  102. Wang B, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2008) Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453(7192):207–211. https://doi.org/10.1038/nature06900

    Article  CAS  PubMed  Google Scholar 

  103. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP (2008) A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J Am Chem Soc 130(42):13850–13851. https://doi.org/10.1021/ja8057953

    Article  CAS  PubMed  Google Scholar 

  104. Yang Q, Wiersum AD, Llewellyn PL, Guillerm V, Serre C, Maurin G (2011) Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading: a computational exploration. Chem Commun 47(34):9603. https://doi.org/10.1039/c1cc13543k

    Article  CAS  Google Scholar 

  105. Shen M, Zhang Y, Xu H, Ma H (2021) MOFs based on the application and challenges of perovskite solar cells. iScience 24(9):103069. https://doi.org/10.1016/j.isci.2021.103069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu H, Zhong J, Ji C, Zhao J, Li D, Zhao R, Jiang Y, Fang S, Liang T, Li H, Li CM (2020) Fabricating an optimal rutile TiO2 electron transport layer by delicately tuning TiCl4 precursor solution for high performance perovskite solar cells. Nano Energy 68:104336. https://doi.org/10.1016/j.nanoen.2019.104336

    Article  CAS  Google Scholar 

  107. Seo J-Y, Kim H-S, Akin S, Stojanovic M, Simon E, Fleischer M, Hagfeldt A, Zakeeruddin SM, Grätzel M (2018) Novel P-dopant toward highly efficient and stable perovskite solar cells. Energy Environ Sci 11(10):2985–2992. https://doi.org/10.1039/C8EE01500G

    Article  CAS  Google Scholar 

  108. Zhai S, Karahan HE, Wang C, Pei Z, Wei L, Chen Y (2020) 1D supercapacitors for emerging electronics: current status and future directions. Adv Mater 32(5):1902387. https://doi.org/10.1002/adma.201902387

    Article  CAS  Google Scholar 

  109. Liu Y, Hu Y, Zhang X, Zeng P, Li F, Wang B, Yang Q, Liu M (2020) Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells. Nano Energy 70:104483. https://doi.org/10.1016/j.nanoen.2020.104483

    Article  CAS  Google Scholar 

  110. Chueh C-C, Chen C-I, Su Y-A, Konnerth H, Gu Y-J, Kung C-W, Wu KC-W (2019) Harnessing MOF materials in photovoltaic devices: recent advances, challenges, and perspectives. J Mater Chem A Mater 7(29):17079–17095. https://doi.org/10.1039/C9TA03595H

    Article  CAS  Google Scholar 

  111. Ahmadian-Yazdi M-R, Gholampour N, Eslamian M (2020) Interface engineering by employing zeolitic imidazolate framework-8 (ZIF-8) as the only scaffold in the architecture of perovskite solar cells. ACS Appl Energy Mater 3(4):3134–3143. https://doi.org/10.1021/acsaem.9b02115

    Article  CAS  Google Scholar 

  112. Sadegh F, Akin S, Moghadam M, Mirkhani V, Ruiz-Preciado MA, Wang Z, Tavakoli MM, Graetzel M, Hagfeldt A, Tress W (2020) Highly efficient, stable and hysteresis-less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy 75:105038. https://doi.org/10.1016/j.nanoen.2020.105038

    Article  CAS  Google Scholar 

  113. Nguyen TMH, Bark CW (2020) Synthesis of cobalt-doped TiO 2 based on metal–organic frameworks as an effective electron transport material in perovskite solar cells. ACS Omega 5(5):2280–2286. https://doi.org/10.1021/acsomega.9b03507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ji J, Liu B, Huang H, Wang X, Yan L, Qu S, Liu X, Jiang H, Duan M, Li Y, Li M (2021) Nondestructive passivation of the TiO 2 electron transport layer in perovskite solar cells by the PEIE-2D MOF interfacial modified layer. J Mater Chem C Mater 9(22):7057–7064. https://doi.org/10.1039/D1TC00036E

    Article  CAS  Google Scholar 

  115. Liu S, Huang W, Liao P, Pootrakulchote N, Li H, Lu J, Li J, Huang F, Shai X, Zhao X, Shen Y, Cheng Y-B, Wang M (2017) 17% efficient printable mesoscopic PIN metal oxide framework perovskite solar cells using cesium-containing triple cation perovskite. J Mater Chem A Mater 5(44):22952–22958. https://doi.org/10.1039/C7TA07660F

    Article  CAS  Google Scholar 

  116. Wang J, Zhang J, Yang Y, Dong Y, Wang W, Hu B, Li J, Cao W, Lin K, Xia D, Fan R (2022) Li-TFSI endohedral metal-organic frameworks in stable perovskite solar cells for anti-deliquescent and restricting ion migration. Chem Eng J 429:132481. https://doi.org/10.1016/j.cej.2021.132481

    Article  CAS  Google Scholar 

  117. Zhang J, Guo S, Zhu M, Li C, Chen J, Liu L, Xiang S, Zhang Z (2021) Simultaneous defect passivation and hole mobility enhancement of perovskite solar cells by incorporating anionic metal-organic framework into hole transport materials. Chem Eng J 408:127328. https://doi.org/10.1016/j.cej.2020.127328

    Article  CAS  Google Scholar 

  118. Geng C, Xie Y, Wei P, Liu H, Qiang Y, Zhang Y (2020) An efficient Co-NC composite additive for enhancing interface performance of carbon-based perovskite solar cells. Electrochim Acta 358:136883. https://doi.org/10.1016/j.electacta.2020.136883

    Article  CAS  Google Scholar 

  119. Hazeghi F, Mozaffari S, Ghorashi SMB (2020) Metal organic framework–derived core-shell CuO@NiO nanosphares as hole transport material in perovskite solar cell. J Solid State Electrochem 24(6):1427–1438. https://doi.org/10.1007/s10008-020-04643-w

    Article  CAS  Google Scholar 

  120. Zhou X, Qiu L, Fan R, Zhang J, Hao S, Yang Y (2020) Heterojunction incorporating perovskite and microporous metal–organic framework nanocrystals for efficient and stable solar cells. Nanomicro Lett 12(1):80. https://doi.org/10.1007/s40820-020-00417-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chang C-Y, Wu K-H, Chang C-Y, Guo R-F, Li G-L, Wang C-Y (2022) Enhanced performance and stability of low-bandgap mixed lead–tin halide perovskite photovoltaic solar cells and photodetectors via defect passivation with UiO-66-NH 2 metal–organic frameworks and interfacial engineering. Mol Syst Des Eng 7(9):1073–1084. https://doi.org/10.1039/D2ME00032F

    Article  CAS  Google Scholar 

  122. Lee C-C, Chen C-I, Liao Y-T, Wu KC-W, Chueh C-C (2019) Enhancing efficiency and stability of photovoltaic cells by using perovskite/Zr-MOF heterojunction including bilayer and hybrid structures. Adv Sci 6(5):1801715. https://doi.org/10.1002/advs.201801715

    Article  CAS  Google Scholar 

  123. Heo DY, Lee TH, Iwan A, Kavan L, Omatova M, Majkova E, Kamarás K, Jang HW, Kim SY (2020) Effect of lead thiocyanate ions on performance of tin-based perovskite solar cells. J Power Sources 458:228067. https://doi.org/10.1016/j.jpowsour.2020.228067

    Article  CAS  Google Scholar 

  124. Lin Y, Shen L, Dai J, Deng Y, Wu Y, Bai Y, Zheng X, Wang J, Fang Y, Wei H, Ma W, Zeng XC, Zhan X, Huang J (2017) Π-conjugated Lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells. Adv Mater 29(7):1604545. https://doi.org/10.1002/adma.201604545

    Article  CAS  Google Scholar 

  125. Niu T, Lu J, Munir R, Li J, Barrit D, Zhang X, Hu H, Yang Z, Amassian A, Zhao K, Liu S (Frank) (2018) Stable high-performance perovskite solar cells via grain boundary passivation. Adv Mater 30(16):1706576. https://doi.org/10.1002/adma.201706576

    Article  CAS  Google Scholar 

  126. Noel NK, Abate A, Stranks SD, Parrott ES, Burlakov VM, Goriely A, Snaith HJ (2014) Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites. ACS Nano 8(10):9815–9821. https://doi.org/10.1021/nn5036476

    Article  CAS  PubMed  Google Scholar 

  127. Qin P-L, Yang G, Ren Z, Cheung SH, So SK, Chen L, Hao J, Hou J, Li G (2018) Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated Lewis base polymer induced trap passivation and charge extraction. Adv Mater 30(12):1706126. https://doi.org/10.1002/adma.201706126

    Article  CAS  Google Scholar 

  128. Wang S, Ma Z, Liu B, Wu W, Zhu Y, Ma R, Wang C (2018) High-performance perovskite solar cells with large grain-size obtained by using the Lewis acid-base adduct of thiourea. Solar RRL 2(6):1800034. https://doi.org/10.1002/solr.201800034

    Article  CAS  Google Scholar 

  129. Wang Y, Wu T, Barbaud J, Kong W, Cui D, Chen H, Yang X, Han L (2019) Stabilizing heterostructures of soft perovskite semiconductors. Science (1979) 365(6454):687–691. https://doi.org/10.1126/science.aax8018

    Article  CAS  Google Scholar 

  130. Wang S, Wang A, Deng X, Xie L, Xiao A, Li C, Xiang Y, Li T, Ding L, Hao F (2020) Lewis acid/base approach for efficacious defect passivation in perovskite solar cells. J Mater Chem A Mater 8(25):12201–12225. https://doi.org/10.1039/D0TA03957H

    Article  CAS  Google Scholar 

  131. Kim M, Motti SG, Sorrentino R, Petrozza A (2018) Enhanced solar cell stability by hygroscopic polymer passivation of metal halide perovskite thin film. Energy Environ Sci 11(9):2609–2619. https://doi.org/10.1039/C8EE01101J

    Article  CAS  Google Scholar 

  132. Liu Y, Akin S, Pan L, Uchida R, Arora N, Milić JV, Hinderhofer A, Schreiber F, Uhl AR, Zakeeruddin SM, Hagfeldt A, Dar MI, Grätzel M (2019) Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22%. Sci Adv 5(6):eaaw2543. https://doi.org/10.1126/sciadv.aaw2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Wu WQ, Yang Z, Rudd PN, Shao Y, Dai X, Wei H, Zhao J, Fang Y, Wang Q, Liu Y, Deng Y, Xiao X, Feng Y, Huang J (2019) Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells. Sci Adv 5(3):eaav8925. https://doi.org/10.1126/sciadv.aav8925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zhao Y, Zhou W, Ma W, Meng S, Li H, Wei J, Fu R, Liu K, Yu D, Zhao Q (2016) Correlations between immobilizing ions and suppressing hysteresis in perovskite solar cells. ACS Energy Lett 1(1):266–272. https://doi.org/10.1021/acsenergylett.6b00060

    Article  CAS  Google Scholar 

  135. Wang K, Liu C, Du P, Zheng J, Gong X (2015) Bulk heterojunction perovskite hybrid solar cells with large fill factor. Energy Environ Sci 8(4):1245–1255. https://doi.org/10.1039/C5EE00222B

    Article  CAS  Google Scholar 

  136. Peng J, Wu Y, Ye W, Jacobs DA, Shen H, Fu X, Wan Y, Duong T, Wu N, Barugkin C, Nguyen HT, Zhong D, Li J, Lu T, Liu Y, Lockrey MN, Weber KJ, Catchpole KR, White TP (2017) Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis. Energy Environ Sci 10(8):1792–1800. https://doi.org/10.1039/C7EE01096F

    Article  CAS  Google Scholar 

  137. Liu K, Chen S, Wu J, Zhang H, Qin M, Lu X, Tu Y, Meng Q, Zhan X (2018) Fullerene derivative anchored SnO 2 for high-performance perovskite solar cells. Energy Environ Sci 11(12):3463–3471. https://doi.org/10.1039/C8EE02172D

    Article  CAS  Google Scholar 

  138. Zuo C, Vak D, Angmo D, Ding L, Gao M (2018) One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy 46:185–192. https://doi.org/10.1016/j.nanoen.2018.01.037

    Article  CAS  Google Scholar 

  139. Zheng X, Deng Y, Chen B, Wei H, Xiao X, Fang Y, Lin Y, Yu Z, Liu Y, Wang Q, Huang J (2018) Dual functions of crystallization control and defect passivation enabled by sulfonic zwitterions for stable and efficient perovskite solar cells. Adv Mater 30(52):1803428. https://doi.org/10.1002/adma.201803428

    Article  CAS  Google Scholar 

  140. Zhang S, Wu S, Chen W, Zhu H, Xiong Z, Yang Z, Chen C, Chen R, Han L, Chen W (2018) Solvent engineering for efficient inverted perovskite solar cells based on inorganic CsPbI2Br light absorber. Mater Today Energy 8:125–133. https://doi.org/10.1016/j.mtener.2018.03.006

    Article  Google Scholar 

  141. Deng X, Xie L, Wang S, Li C, Wang A, Yuan Y, Cao Z, Li T, Ding L, Hao F (2020) Ionic liquids engineering for high-efficiency and stable perovskite solar cells. Chem Eng J 398:125594. https://doi.org/10.1016/j.cej.2020.125594

    Article  CAS  Google Scholar 

  142. Shahiduzzaman Md, Yamamoto K, Furumoto Y, Yonezawa K, Hamada K, Kuroda K, Ninomiya K, Karakawa M, Kuwabara T, Takahashi K, Takahashi K, Taima T (2017) Viscosity effect of ionic liquid-assisted controlled growth of CH3NH3PbI3 nanoparticle-based planar perovskite solar cells. Org Electron 48:147–153. https://doi.org/10.1016/j.orgel.2017.06.001

    Article  CAS  Google Scholar 

  143. Shahiduzzaman M, Yamamoto K, Furumoto Y, Kuwabara T, Takahashi K, Taima T (2015) Ionic liquid-assisted growth of methylammonium lead iodide spherical nanoparticles by a simple spin-coating method and photovoltaic properties of perovskite solar cells. RSC Adv 5(95):77495–77500. https://doi.org/10.1039/C5RA08102E

    Article  CAS  Google Scholar 

  144. Salado M, Ramos FJ, Manzanares VM, Gao P, Nazeeruddin MK, Dyson PJ, Ahmad S (2016) Extending the lifetime of perovskite solar cells using a perfluorinated dopant. Chemsuschem 9(18):2708–2714. https://doi.org/10.1002/cssc.201601030

    Article  CAS  PubMed  Google Scholar 

  145. Bai S, Da P, Li C, Wang Z, Yuan Z, Fu F, Kawecki M, Liu X, Sakai N, Wang JT-W, Huettner S, Buecheler S, Fahlman M, Gao F, Snaith HJ (2019) Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature 571(7764):245–250. https://doi.org/10.1038/s41586-019-1357-2

    Article  CAS  PubMed  Google Scholar 

  146. Lu H, Krishna A, Zakeeruddin SM, Grätzel M, Hagfeldt A (2020) Compositional and interface engineering of organic-inorganic lead halide perovskite solar cells. iScience 23(8):101359. https://doi.org/10.1016/j.isci.2020.101359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang H, Wu Y, Shen C, Li E, Yan C, Zhang W, Tian H, Han L, Zhu W (2019) Efficient and stable chemical passivation on perovskite surface via bidentate anchoring. Adv Energy Mater 9(13):1803573. https://doi.org/10.1002/aenm.201803573

    Article  CAS  Google Scholar 

  148. Qi W, Zhou X, Li J, Cheng J, Li Y, Ko MJ, Zhao Y, Zhang X (2020) Inorganic material passivation of defects toward efficient perovskite solar cells. Sci Bull (Beijing) 65(23):2022–2032. https://doi.org/10.1016/j.scib.2020.07.017

    Article  CAS  PubMed  Google Scholar 

  149. Chen C, Li F, Zhu L, Shen Z, Weng Y, Lou Q, Tan F, Yue G, Huang Q, Wang M (2020) Efficient and stable perovskite solar cells thanks to dual functions of oleyl amine-coated PbSO4(PbO)4 quantum dots: defect passivation and moisture/oxygen blocking. Nano Energy 68:104313. https://doi.org/10.1016/j.nanoen.2019.104313

    Article  CAS  Google Scholar 

  150. Yang S, Chen S, Mosconi E, Fang Y, Xiao X, Wang C, Zhou Y, Yu Z, Zhao J, Gao Y, De Angelis F, Huang J (2019) Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts. Science (1979) 365(6452):473–478. https://doi.org/10.1126/science.aax3294

    Article  CAS  Google Scholar 

  151. Wang Z, Wu T, Xiao L, Qin P, Yu X, Ma L, Xiong L, Li H, Chen X, Wang Z, Wu T, Xiao ML, Qin P, Yu DX, Ma DL, Xiong DL, Li DH, Chen X (2021) Multifunctional potassium hexafluorophosphate passivate interface defects for high efficiency perovskite solar cells. J Power Sources 488:229451. https://doi.org/10.1016/j.jpowsour.2021.229451

    Article  CAS  Google Scholar 

  152. Bi H, Liu B, He D, Bai L, Wang W, Zang Z, Chen J (2021) Interfacial defect passivation and stress release by multifunctional KPF6 modification for planar perovskite solar cells with enhanced efficiency and stability. Chem Eng J 418:129375. https://doi.org/10.1016/j.cej.2021.129375

    Article  CAS  Google Scholar 

  153. Gong X, Guan L, Pan H, Sun Q, Zhao X, Li H, Pan H, Shen Y, Shao Y, Sun L, Cui Z, Ding L, Wang M (2018) Highly efficient perovskite solar cells via nickel passivation. Adv Funct Mater 28(50):1804286. https://doi.org/10.1002/adfm.201804286

    Article  CAS  Google Scholar 

  154. Wu W-Q, Rudd PN, Ni Z, Van Brackle CH, Wei H, Wang Q, Ecker BR, Gao Y, Huang J (2020) Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells. J Am Chem Soc 142(8):3989–3996. https://doi.org/10.1021/jacs.9b13418

    Article  CAS  PubMed  Google Scholar 

  155. Chen H, Liu T, Zhou P, Li S, Ren J, He H, Wang J, Wang N, Guo S (2020) Efficient bifacial passivation with crosslinked thioctic acid for high-performance methylammonium lead iodide perovskite solar cells. Adv Mater 32(6):1905661. https://doi.org/10.1002/adma.201905661

    Article  CAS  Google Scholar 

  156. Xie L, Zhang T, Zhao Y (2020) Stabilizing the MAPbI3 perovksite via the in-situ formed lead sulfide layer for efficient and robust solar cells. J Energy Chem 47:62–65. https://doi.org/10.1016/j.jechem.2019.11.023

    Article  Google Scholar 

  157. Son D-Y, Kim S-G, Seo J-Y, Lee S-H, Shin H, Lee D, Park N-G (2018) Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J Am Chem Soc 140(4):1358–1364. https://doi.org/10.1021/jacs.7b10430

    Article  CAS  PubMed  Google Scholar 

  158. Li C, Wang A, Xie L, Deng X, Liao K, Yang J, Li T, Hao F (2019) Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. J Mater Chem A Mater 7(42):24150–24163. https://doi.org/10.1039/C9TA08130E

    Article  CAS  Google Scholar 

  159. Yuan S, Qian F, Yang S, Cai Y, Wang Q, Sun J, Liu Z, Liu S (Frank) (2019) NbF 5: a novel Α-phase stabilizer for FA-based perovskite solar cells with high efficiency. Adv Funct Mater 29(47):1807850. https://doi.org/10.1002/adfm.201807850

    Article  CAS  Google Scholar 

  160. Lu J, Chen S-C, Zheng Q (2019) Defect passivation of CsPbI2Br perovskites through Zn(II) doping: toward efficient and stable solar cells. Sci China Chem 62(8):1044–1050. https://doi.org/10.1007/s11426-019-9486-0

    Article  CAS  Google Scholar 

  161. Li H, Shi J, Deng J, Chen Z, Li Y, Zhao W, Wu J, Wu H, Luo Y, Li D, Meng Q (2020) Intermolecular π–π conjugation self-assembly to stabilize surface passivation of highly efficient perovskite solar cells. Adv Mater 32(23):1907396. https://doi.org/10.1002/adma.201907396

    Article  CAS  Google Scholar 

  162. Shao J, Yang S, Liu Y (2017) Efficient bulk heterojunction CH 3 NH 3 PbI 3 –TiO 2 solar cells with TiO 2 nanoparticles at grain boundaries of perovskite by multi-cycle-coating strategy. ACS Appl Mater Interfaces 9(19):16202–16214. https://doi.org/10.1021/acsami.7b02323

    Article  CAS  PubMed  Google Scholar 

  163. Cao J, Li C, Lv X, Feng X, Meng R, Wu Y, Tang Y (2018) Efficient grain boundary suture by low-cost tetra-ammonium zinc phthalocyanine for stable perovskite solar cells with expanded photoresponse. J Am Chem Soc 140(37):11577–11580. https://doi.org/10.1021/jacs.8b07025

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sardar Vallabhbhai National Institute of Technology, Surat, Government of India, and Department of Science and Technology, Government of India for help in carrying out the present work. We also acknowledge the sophisticated Instrument Centre, SVNIT, Surat for characterization facilities.

Author information

Authors and Affiliations

Authors

Contributions

Srish Kulkarni: literature survey, classification, investigation, and writing original draft. Dr. Smita Gupta: writing review and editing. Dr. Jignasa V. Gohel: conceptualization, experimental design, supervision, writing review and editing, validation, project administration, and funding acquisition.

Corresponding author

Correspondence to Jignasa V. Gohel.

Ethics declarations

Ethical approval

No experiments involving human tissue were carried out, so no ethical approval was required by an institutional review board or equivalent ethics committee.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulkarni, S., Gupta, S. & Gohel, J.V. “Contemporary neoteric energy materials to enhance efficiency and stability of perovskite solar cells: a review”. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05905-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05905-7

Keywords

Navigation