Skip to main content
Log in

Highly selective photoelectrochemical sensing platform based on upconversion nanoparticles and quantum dots for sensitive detection of Cu2+

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The photoelectrochemical (PEC) detection method, as a potential strategy for Cu2+ detection, has garnered widespread attention. In this paper, we present a PEC sensing platform using upconversion nanoparticles (UCNPs) as the conversion light source and CdTe quantum dots (QDs) as the photoactive material for the detection of Cu2+ in solution. When irradiated with a 980 nm light source, the UCNPs will absorb the 980 nm laser and emit fluorescence around 550 nm, which is then absorbed by the CdTe QDs. This absorption leads to electron-hole separation, with electrons transferring through the multi-walled carbon nanotubes (MWCNTs) into the indium tin oxide (ITO) electrode. In the presence of Cu2+, the Cu2+ will be reduced to Cu+ by the electrons generated by the CdTe QDs, thereby hindering the transfer of electrons from the CdTe QDs to the ITO electrode and resulting in a reduction in current. The photocurrent continuously decreases with increasing Cu2+ concentration and shows a good linear relationship with Cu2+ concentration in the range of 1 µM to 25 µM. The lowest detection limit is 0.5 µM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kang YJ (2011) Copper and homocysteine in cardiovascular diseases. Pharmacol Ther 129:321–331

    Article  CAS  PubMed  Google Scholar 

  2. Guthrie LM, Soma S, Yuan S, Silva A, Zulkifli M, Snavely TC, Greene HF, Nunez E, Lynch B, De Ville C (2020) Elesclomol alleviates Menkes pathology and mortality by escorting Cu to cuproenzymes in mice. Science 368:620–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alies B, Renaglia E, Rózga M, Bal W, Faller P, Hureau C (2013) Cu (II) affinity for the Alzheimer’s peptide: tyrosine fluorescence studies revisited. Anal Chem 85:1501–1508

    Article  CAS  PubMed  Google Scholar 

  4. Mahajan PG, Dige NC, Vanjare BD, Eo S-H, Kim SJ, Lee KH (2019) A nano sensor for sensitive and selective detection of Cu2+ based on fluorescein: cell imaging and drinking water analysis. Spectrochim Acta Part A Mol Biomol Spectrosc 216:105–116

    Article  CAS  Google Scholar 

  5. Hu L, Sun C, Cheng R, Gao X, Zhou J, Wang Y, Jiang R, Zhu X, Liu P, Yan Z (2023) A high-performance fluorescent and ratiometric colorimetric detection of Cu2+ in practice. Anal Methods 15:4656–4662

    Article  CAS  PubMed  Google Scholar 

  6. Patil D, Khadke N, Patil A, Borhade A (2022) Amino-quinoline based colorimetric chemosensor for Cu2+ detection. J Anal Chem 77:18–25

    Article  CAS  Google Scholar 

  7. Prete P, Iannaccone D, Proto A, Tobiszewski M, Cucciniello R (2023) Development and validation of an eco-compatible UV–Vis spectrophotometric method for the determination of Cu2+ in aqueous matrices. Anal Bioanal Chem 415:5003–5010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guo W, He H, Zhu H, Hou X, Chen X, Zhou S, Wang S, Huang L, Lin J (2019) Preparation and properties of a biomass cellulose-based colorimetric sensor for Ag+ and Cu2+. Ind Crops Prod 137:410–418

    Article  CAS  Google Scholar 

  9. Wang X, Chen W, Yang H, Yuan X, Huang K, Chen P, Ying B (2020) Homogeneous assay based on the pre-reduction and selective cation exchange for detection of multiple targets by atomic spectrometry. Talanta 219:121387

    Article  CAS  PubMed  Google Scholar 

  10. Limchoowong N, Sricharoen P, Techawongstien S, Chanthai S (2017) Using bio-dispersive solution of chitosan for green dispersive liquid–liquid microextraction of trace amounts of Cu (II) in edible oils prior to analysis by ICP–OES. Food Chem 230:398–404

    Article  CAS  PubMed  Google Scholar 

  11. Li G, Feng S, Yan L, Yang L, Huo B, Wang L, Luo S, Yang D (2023) Direct electrochemical detection of Cu (II) ions in juice and tea beverage samples using MWCNTs-BMIMPF6-Nafion modified GCE electrodes. Food Chem 404:134609

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira R, Chaar J, Baldan M, Braga N (2021) Simultaneous voltammetric detection of Fe3+, Cu2+, Zn2+, Pb2+ e Cd2+ in fuel ethanol using anodic stripping voltammetry and boron-doped diamond electrodes. Fuel 291:120104

    Article  CAS  Google Scholar 

  13. Wang F-F, Liu C, Yang J, Xu H-L, Pei W-Y, Ma J-F (2022) A sulfur-containing capsule-based metal-organic electrochemical sensor for super-sensitive capture and detection of multiple heavy-metal ions. Chem Eng J 438:135639

    Article  CAS  Google Scholar 

  14. Mei D, Yan B (2023) Flumequine-mediated fluorescent zeolitic imidazolate framework functionalized by Eu3+ for sensitive and selective detection of UO22+, Ni2+ and Cu2+ in nuclear wastewater. J Hazard Mater 447:130822

    Article  CAS  PubMed  Google Scholar 

  15. Yang L, Li L, Li F, Zheng H, Li T, Liu X, Zhu J, Zhou Y, Alwarappan S (2021) Ultrasensitive photoelectrochemical aptasensor for diclofenac sodium based on surface-modified TiO2-FeVO4 composite. Anal Bioanal Chem 413:193–203

    Article  CAS  PubMed  Google Scholar 

  16. Zheng H, Zhang S, Liu X, Zhou Y, Alwarappan S (2020) Synthesis of a PEDOT-TiO2 heterostructure as a dual biosensing platform operating via photoelectrochemical and electrochemical transduction mode. Biosens Bioelectron 162:112234

    Article  CAS  PubMed  Google Scholar 

  17. Tang Y, Liu X, Zheng H, Yang L, Li L, Zhang S, Zhou Y, Alwarappan S (2019) A photoelectrochemical aptasensor for aflatoxin B1 detection based on an energy transfer strategy between Ce-TiO2@ MoSe2 and au nanoparticles. Nanoscale 11:9115–9124

    Article  CAS  PubMed  Google Scholar 

  18. Li P-P, Liu X-P, Mao C-J, Jin B-K, Zhu J-J (2019) Photoelectrochemical DNA biosensor based on g-C3N4/MoS2 2D/2D heterojunction electrode matrix and co-sensitization amplification with CdSe QDs for the sensitive detection of ssDNA. Anal Chim Acta 1048:42–49

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Bian F, Qin X, Wang Q (2018) Visible light photoelectrochemical aptasensor for chloramphenicol by using a TiO2 nanorod array sensitized with Eu (III)-doped CdS quantum dots. Microchim Acta 185:1–10

    Article  Google Scholar 

  20. Yan J, Fu Q, Zhang S, Liu Y, Shi X, Hou J, Duan J, Ai S (2022) A sensitive ratiometric fluorescent sensor based on carbon dots and CdTe quantum dots for visual detection of biogenic amines in food samples. Spectrochim Acta Part A Mol Biomol Spectrosc 282:121706

    Article  CAS  Google Scholar 

  21. Qiu Z, Tang D (2020) Nanostructure-based photoelectrochemical sensing platforms for biomedical applications. J Mater Chem B 8:2541–2561

    Article  CAS  PubMed  Google Scholar 

  22. Li M, Tian X, Liang W, Yuan R, Chai Y (2018) Ultrasensitive photoelectrochemical assay with PTB7-Th/CdTe quantum dots sensitized structure as signal tag and benzo-4-chlorohexadienone precipitate as efficient quencher. Anal Chem 90:14521–14526

    Article  CAS  PubMed  Google Scholar 

  23. Li C, Liu J, Alonso S, Li F, Zhang Y (2012) Upconversion nanoparticles for sensitive and in-depth detection of Cu2+ ions. Nanoscale 4:6065–6071

    Article  CAS  PubMed  Google Scholar 

  24. Wang X, Zhang X, Huang D, Zhao T, Zhao L, Fang X, Yang C, Chen G (2021) High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level. Anal Chem 93:11686–11691

    Article  CAS  PubMed  Google Scholar 

  25. Ye X, Wang X, Kong Y, Dai M, Han D, Liu Z (2021) FRET modulated signaling: a versatile strategy to construct photoelectrochemical microsensors for in vivo analysis. Angew Chem Int Ed 60:11774–11778

    Article  CAS  Google Scholar 

  26. Xiong Y, Guo J, Yang L, Yao S, Xiao P, Zhang Y (2021) Manipulating the low-energy photons by an upconversion fluorescent hybrid photocatalyst for water oxidation. ACS Sustain Chem Eng 9:11171–11178

    Article  CAS  Google Scholar 

  27. Hao M, Miao P, Wang Y, Wang W, Ge S, Yu X, Hu X-X, Ding B, Zhang J, Yan M (2021) Near-infrared light-initiated photoelectrochemical biosensor based on upconversion nanorods for immobilization-free miRNA detection with double signal amplification. Anal Chem 93:11251–11258

    Article  CAS  PubMed  Google Scholar 

  28. Kong W, Sun T, Chen B, Chen X, Ai F, Zhu X, Li M, Zhang W, Zhu G, Wang F (2017) A general strategy for ligand exchange on upconversion nanoparticles. Inorg Chem 56:872–877

    Article  CAS  PubMed  Google Scholar 

  29. Zhou W, Coleman JJ (2016) Semiconductor quantum dots. Curr Opin Solid State Mater Sci 20:352–360

    Article  CAS  Google Scholar 

  30. Xu J, Li H, Arumugam SS, Rong Y, Wang P, Chen Q (2022) A turn-on fluorescence sensor for rapid sensing of ATP based on luminescence resonance energy transfer between upconversion nanoparticles and Cy3 in vivo or vitro. Spectrochim Acta Part A Mol Biomol Spectrosc 265:120341

    Article  CAS  Google Scholar 

  31. Wang G-Q, Wei J-J, Ye J-Y, Wang A-J, Mei L-P, Feng J-J (2023) A signal-off photoelectrochemical aptasensor for highly sensitive detection of T-2 toxin using 3D CdS/CdIn2S4 heterostructured nanostars by in-situ generated electron donor strategy. Sens Actuators B 381:133421

    Article  CAS  Google Scholar 

  32. Yu S, Chen X, Huang C, Han D (2019) A Cu2+-doped two-dimensional material-based heterojunction photoelectrode: application for highly sensitive photoelectrochemical detection of hydrogen sulfide. RSC Adv 9:28276–28283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ibrahim I, Lim H, Huang N, Pandikumar A (2016) Cadmium sulphide-reduced graphene oxide-modified photoelectrode-based photoelectrochemical sensing platform for copper (II) ions. PLoS ONE 11:e0154557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Himmelstoß SF, Hirsch T (2019) Long-term colloidal and chemical stability in aqueous media of NaYF4‐type upconversion nanoparticles modified by ligand‐exchange. Part Part Syst Charact 36:1900235

    Article  Google Scholar 

  35. Liu D, Xu X, Wang F, Zhou J, Mi C, Zhang L, Lu Y, Ma C, Goldys E, Lin J (2016) Emission stability and reversibility of upconversion nanocrystals. J Mater Chem C 4:9227–9234

    Article  CAS  Google Scholar 

  36. Qian D, Wang Z, Xiao Z, Fang C-J (2021) A fluorescent probe for the detection of Cu (II) in water and tumor cells. Inorg Chem Commun 126:108471

    Article  CAS  Google Scholar 

  37. Fatma N, Mehata MS, Pandey N, Pant S (2020) Flavones fluorescence-based dual response chemosensor for metal ions in aqueous media and fluorescence recovery. J Fluoresc 30:759–772

    Article  CAS  PubMed  Google Scholar 

  38. Zhao H, Li R, Wang Y, Zhao Z, Shuang S (2023) Red emitting nitrogen-doped carbon dots for fluorescence and colorimetric dual-mode detection of Cu2+ and biological sensing. J Photochem Photobiol A 439:114575

    Article  CAS  Google Scholar 

  39. Hammami A, Assaker IB, Chtourou R (2022) Regenerative, low-cost and switchable photoelectrochemical sensor for detection of Cu2+ using MnO2-GO heterojunction. J Solid State Electrochem 26:211–218

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science Foundation of China (Grant Nos. 82160729). the Natural Science Foundation of JiangXi Province (20212ACB206005,20192BAB205103,20202BABL206152). Science and technology project of Education Department of JiangXi Province (GJJ2200974,GJJ2200906). the doctoral research Foundation project of Jiangxi University of Traditional Chinese Medicine(2022WBZR005). Innovation and Entrepreneurship Training Program for College Students of Jiangxi University of Chinese Medicine (S202210412040,X20231041215,202110412164). Jiangxi University of Chinese Medicine School-level Science and Technology Innovation Team Development Program(CXTD22005). Jiangxi Province Graduate Innovation Special Fund Project (YC2023-S790).

Author information

Authors and Affiliations

Authors

Contributions

Xiaocui Yin: Data curation, Writing - original draft, Writing - review and editing. Fusheng Liao: Methodology, Formal analysis. Xia Yin: roject administration. Qian Long: Software. Jing Zhang: Investigation. Hao Fan: Conceptualization. Wei Xiong: Software. Hedong Jiang: Methodology, Investigation. Wenming Liu: Supervision. Qiangqiang Yu: Methodology, Investigation. Guobing Wei: Supervision. Hanfeng Cui: Conceptualization, Supervision, Validation.

Corresponding authors

Correspondence to Hanfeng Cui, Qiangqiang Yu or Guobing Wei.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Liao, F., Yin, X. et al. Highly selective photoelectrochemical sensing platform based on upconversion nanoparticles and quantum dots for sensitive detection of Cu2+. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05896-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05896-5

Keywords

Navigation