Skip to main content

Advertisement

Log in

In situ structural characterization of Li3PS4 solid electrolytes under high pressure

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

All-solid-state batteries are typically manufactured under high pressure to decrease the resistance of the solid interface. However, until now, there has been a lack of research concerning changes in the structure of solid electrolytes owing to pressurization. Our study addresses this gap by exploring the structural modifications of the sulfide solid electrolyte Li3PS4 under high-pressure conditions. We observed a tendency for PS4 molecules to converge upon each other in both β-Li3PS4 and g-Li3PS4 crystals when subjected to a pressure of 100 MPa. In g-Li3PS4, X-ray scattering and pair distribution function analyses following pressure application and subsequent return to ambient conditions remained consistent with pre-compression measurements. Conversely, in β-Li3PS4 crystals, post-pressure X-ray scattering differed from pre-compression measurements, suggesting pressure-induced atomic rearrangement within the crystal lattice. This underscores the importance of accounting for pressure-induced structural changes, especially in computational simulation studies where crystal structures are often assumed to remain static pre- and post-pressurization. Our findings demonstrate that under high pressure, the crystal structure of Li3PS4 slightly changes by approximately 1~2%, rendering it a viable candidate for utilization as a solid electrolyte in all-solid-state batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kato Y, Hori S, Saito T, Suzuki K, Hirayama M, Mitsui A, Yonemura M, Iba H, Kanno R (2016) Nat Energy 1:16030

    Article  CAS  Google Scholar 

  2. Hayashi A, Sakuda A, Tatsumisago M (2016) Development of sulfide solid electrolytes and interface formation processes for bulk-type all-solid-state Li and Na batteries.  Front Energy Res 4:25

    Google Scholar 

  3. Sakuda A, Hayashi A, Takigawa Y, Higashi K, Tatsumisago M (2013) J Ceram Soc Jpn 16:946–949

    Article  Google Scholar 

  4. Doux J, Nguyen H, Tan DHS, Banerjee A, Wang X, Wu EA, Jo C, Yang H, Meng YS (2020) Adv Enegy Mater 10:1903253

    Article  CAS  Google Scholar 

  5. Doux J, Yang Y, Tan DHS, Nguyen H, Wu EA, Wang X, Banerjee A, Meng YS (2020) J Mater Chem A 10:5049

    Article  Google Scholar 

  6. Sakka Y, Yamashige H, Watanabe A, Takeuchi A, Uesugi M, Uesugi K, Orikasa Y (2022) J Mater Chem A 10:16602–16609

    Article  CAS  Google Scholar 

  7. Kato A, Nose M, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M (2018) J Ceram Soc Jpn 126:719–727

    Article  CAS  Google Scholar 

  8. Kato A, Yamamoto M, Sakuda A, Hayashi A, Tatsumisago M (2018) ACS Appl Energy Mater 1:1002–1007

    Article  CAS  Google Scholar 

  9. Sakuda A, Hayashi A, Tatsumisago M (2013) Sci Rep 3:2261

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kimura T, Inaoka T, Izawa R, Nakano T, Hotehama C, Sakuda A, Tatsumisago M, Hayashi A (2023) J Am Chem Soc 145:14466–14474

    Article  CAS  PubMed  Google Scholar 

  11. Ohara K, Mitsui A, Mori M, Onodera Y, Shiotani S, Koyama Y, Orikasa Y, Murakami M, Shimoda K, Mori K, Fukunaga T, Arai H, Uchimoto Y, Ogumi Z (2016) Sci Rep 6:21302. https://doi.org/10.1038/srep21302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Homma K, Yonemura M, Kobayashi T, Nagao M, Hirayama M, Kanno R (2011) Solid State Ionics 182:53–58. https://doi.org/10.1016/j.ssi.2010.10.001

    Article  CAS  Google Scholar 

  13. Ohara K, Tominaka S, Yamada H, Takahashi M, Yamaguchi H, Utsuno F, Umeki T, Yao A, Nakada K, Takemoto M, Hiroi S, Tsuji N, Wakihara T (2018) J Synchrotron Radiat 25:1627–1633

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ohara K, Onodera Y, Murakami M, Kohara S (2021) J Phys Condens Matter 33:383001

    Article  CAS  Google Scholar 

  15. Tominaka S, Yamada H, Hiroi S, Kawaguchi SI, Ohara K (2018) ACS Omega 3:8874–8881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Izumi F, Momma K (2007) Solid State Phenom 130:15–20

    Article  CAS  Google Scholar 

  17. Sasaki A (2016) Development History of the PDXL Structure Analysis Package, Rigaku newsletters. https://www.rigaku.com/newsletters/mabu/april2017/app.note_xrd_01.pdf

  18. Blöchl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  19. Kresse G, Hafner J (1993) Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  20. Kresse G, Furthmüller J (1996) Phys Rev B 54:11169–11186

    Article  CAS  Google Scholar 

  21. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  22. Kudu OU, Famprikis T, Cretu S, Porcheron B, Salager E, Demortiere A, Courty M, Viallet Virginie, Mercier TL, Fleutot B, Braida MD, Masquelier C (2022) Structural details in Li3PS4: Variety in thiophosphate building blocks and correlation to ion transport. Energy Storage Mater 44:168–179

    Article  Google Scholar 

Download references

Funding

Synchrotron radiation experiments were performed with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2020A1702, 2020A1703, 2021A1267, 2021B1744, 2022A1238, and 2022B1224). This work was partially supported by JSPS KAKENHI (Grant Number JP19H05814) and the Green Technologies of Excellence program (Grant Number JPMJGX23S5) of the Japan Science and Technology Agency (GteX, JST).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by A. Y., S. K., and F. U. Data collection was performed by A. Y., S. K., H. Y., J. T., F. U., and K. O. Data analysis were performed by all authors. The first draft of the manuscript was written by A. Y., S. K., S. H., F. U., and K. O. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Koji Ohara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 302 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, A., Kadota, S., Hiroi, S. et al. In situ structural characterization of Li3PS4 solid electrolytes under high pressure. J Solid State Electrochem (2024). https://doi.org/10.1007/s10008-024-05889-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-024-05889-4

Navigation