Skip to main content
Log in

Highly sensitive electrochemical detection of carcinoembryonic antigen by silver nanoparticles/carboxylated single-walled carbon nanotubes embedded in mesoporous carbon foam

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Carbon-based mesoporous foam nanostructures have gained significant attention because of features like high specific surface area, stability, abundant porosity, good conductivity, and excellent biocompatibility. Highly mesoporous carbon foam (MCF) was properly synthesized via the low-cost, template-free, simplistic Pechini method. Functional nanomaterials can be incorporated into the surface of MCFs to design functionalized MCFs for a broader range of applications. This opens up new horizons for designing MCFs that can be used in various fields. This study aims to introduce a new type of MCF decorated with carboxylated single-wall carbon nanotubes (CSWCNTs) and silver nanoparticles (AgNPs). An amine-functionalized aptamer was immobilized on the modified glassy carbon electrode (GCE) by covalent bonds and electrostatic interactions to determine carcinoembryonic antigen (CEA) in serum samples. The designed aptasensor best operated at 0.05 V (vs. Ag/AgCl) and showed a wide linear range from 1 × 10−6 to 20 ng mL−1, high sensitivity (27.96 μA mL ng−1 cm−2), low limit of detection (0.30 fg mL−1), high bioaffinity, superior selectivity, and good reproducibility. As the results indicated, the AgNPs/CSWCNT/MCF nanocomposite–based homogenous aptasensor platform has great potential for the low-cost clinical detection of other tumor markers in complex biological environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    Article  PubMed  Google Scholar 

  2. Song Q, Merajver SD, Li JZ (2015) Cancer classification in the genomic era: five contemporary problems. Hum Genomics 9:1–8

    Article  Google Scholar 

  3. Gold P, Freedman SO (1965) Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. J Exp Med 121:439–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vogel I, Francksen H, Soeth E, Henne-Bruns D (2001) The carcinoembryonic antigen and its prognostic impact on immunocytologically detected intraperitoneal colorectal cancer cells. Am J Surg 181:188–193

    Article  CAS  PubMed  Google Scholar 

  5. Naghibalhossaini F, Ebadi P (2006) Evidence for CEA release from human colon cancer cells by an endogenous GPI-PLD enzyme. Cancer Lett 234:158–167

    Article  CAS  PubMed  Google Scholar 

  6. Prete SP, Rossi L, Correale PP, Turriziani M, Baier S, Tamburrelli G, De VL, Bonmassar E, Aquino A (2005) Combined effects of protein kinase inhibitors and 5-fluorouracil on CEA expression in human colon cancer cells. Pharmacol Res 52:167–173

    Article  CAS  PubMed  Google Scholar 

  7. Tao Z, Du J, Cheng Y, Li Q (2018) Electrochemical immune analysis system for gastric cancer biomarker carcinoembryonic antigen (CEA) detection. Int J Electrochem Sci 13:1413–1422

    Article  CAS  Google Scholar 

  8. Serdarevic N, Smajic J (2018) Comparison of chemiluminescent microparticle immunoassay (CMIA) with electrochemiluminescence immunoassay (ECLIA) for Carcinoembryonic antigen (CEA). J Heal Sci 8:94–100

    Google Scholar 

  9. Huang J-Y, Zhao L, Lei W, Wen W, Wang YJ (2018) A high-sensitivity electrochemical aptasensor of carcinoembryonic antigen based on graphene quantum dots-ionic liquid-nafion nanomatrix and DNAzyme-assisted signal amplification strategy. Biosens Bioelectron 99:28–33

    Article  CAS  PubMed  Google Scholar 

  10. Tian T, Liu H, Li L, Yu J, Ge S, Song X, Yan M (2017) Based biosensor for noninvasive detection of epidermal growth factor receptor mutations in non-small cell lung cancer patients. Sensors Actuators B Chem 251:440–445

    Article  CAS  Google Scholar 

  11. Rashid JIA, Abdullah J, Yusof NA, Hajian R (2013) The development of silicon nanowire as sensing material and its applications. J Nanomater 2013:14

    Google Scholar 

  12. Mishra GK, Barfidokht A, Tehrani F, Mishra RK (2018) Food safety analysis using electrochemical biosensors. Foods 7:141

    Article  PubMed  PubMed Central  Google Scholar 

  13. Alavi-Tabari SAR, Khalilzadeh MA, Karimi-Maleh H (2018) Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J Electroanal Chem 811:84–88

    Article  CAS  Google Scholar 

  14. Hatamluyi B, Sadeghzadeh S, Rezayi M, Sany SBT (2023) Diazinon electrochemical biosensor mediated by aptamer and nanoscale porous carbon derived from ZIF-8. Sensors Actuators B Chem 381:133424

    Article  CAS  Google Scholar 

  15. Baretta R, Raucci A, Cinti S, Frasconi M (2023) Porous hydrogel scaffolds integrating Prussian blue nanoparticles: A versatile strategy for electrochemical (bio) sensing. Sensors Actuators B Chem 376:132985

    Article  CAS  Google Scholar 

  16. Yang J, Zou L (2014) Recycle of calcium waste into mesoporous carbons as sustainable electrode materials for capacitive deionization. Microporous Mesoporous Mater 183:91–98

    Article  CAS  Google Scholar 

  17. Joshi A, Schuhmann W, Nagaiah TC (2016) Mesoporous nitrogen containing carbon materials for the simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 230:544–555

    Article  CAS  Google Scholar 

  18. Cetinkaya A, Kaya S, Ozkan SA (2023) A collection of the best practice examples of electroanalytical applications in education: from polarography to sensors. J Solid State Electrochem 1–27

  19. Mak CH, Liao C, Fu Y, Zhang M, Tang CY, Tsang YH, Chan HLW, Yan F (2015) Highly-sensitive epinephrine sensors based on organic electrochemical transistors with carbon nanomaterial modified gate electrodes. J Mater Chem C 3:6532–6538

    Article  CAS  Google Scholar 

  20. Asadpour F, Mazloum-Ardakani M, Hoseynidokht F, Moshtaghioun SM (2021) In situ monitoring of gating approach on mesoporous silica nanoparticles thin-film generated by the EASA method for electrochemical detection of insulin. Biosens Bioelectron 180:113124

    Article  CAS  PubMed  Google Scholar 

  21. Szunerits S, Boukherroub R, Downard A, Zhu J (2017) Nanocarbon chemistry and interfaces. Wiley, Germany

    Google Scholar 

  22. Fiorito PA, Gonçales VR, Ponzio EA, de Torresi SIC (2005) Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chem Commun 366–368

  23. Cao X, Wang N, Jia S, Guo L, Li K (2013) Bimetallic AuPt nanochains: synthesis and their application in electrochemical immunosensor for the detection of carcinoembryonic antigen. Biosens Bioelectron 39:226–230

    Article  CAS  PubMed  Google Scholar 

  24. Li H, Sun Z, Zhong W, Hao N, Xu D, Chen HY (2010) Ultrasensitive electrochemical detection for DNA arrays based on silver nanoparticle aggregates. Anal Chem 82:5477–5483

    Article  CAS  PubMed  Google Scholar 

  25. Ding X, Liu Y, Gao L, Guo L (2008) Synthesis and characterization of doped LaCrO3 perovskite prepared by EDTA–citrate complexing method. J Alloys Compd 458:346–350

    Article  CAS  Google Scholar 

  26. Zhu X, Wu G, Lu N, Yuan X, Li B (2017) A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants. J Hazard Mater 324:272–280

    Article  CAS  PubMed  Google Scholar 

  27. Hakimian F, Ghourchian H (2020) Ultrasensitive electrochemical biosensor for detection of microRNA-155 as a breast cancer risk factor. Anal Chim Acta 1136:1–8

    Article  CAS  PubMed  Google Scholar 

  28. Kim K, Lee HB, Lee JW, Park HK, Shin KS (2008) Self-assembly of poly (ethylenimine)-capped Au nanoparticles at a toluene− water interface for efficient surface-enhanced Raman scattering. Langmuir 24:7178–7183

    Article  CAS  PubMed  Google Scholar 

  29. Sahraei N, Mazloum-Ardakani M, Khoshroo A, Hoseynidokht F, Mohiti J, Moradi A (2022) Electrochemical system designed on a paper platform as a label-free immunosensor for cancer derived exosomes based on a mesoporous carbon foam-ternary nanocomposite. J Electroanal Chem 920:116590

    Article  CAS  Google Scholar 

  30. Wu Z, Sun L-P, Zhou Z (2018) Efficient nonenzymatic H2O2 biosensor based on ZIF-67 MOF derived Co nanoparticles embedded N-doped mesoporous carbon composites. Sensors Actuators B Chem 276:142–149

    Article  CAS  Google Scholar 

  31. Rahsepar M, Foroughi F, Kim H (2019) A new enzyme-free biosensor based on nitrogen-doped graphene with high sensing performance for electrochemical detection of glucose at biological pH value. Sensors Actuators B Chem 282:322–330

    Article  CAS  Google Scholar 

  32. Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66:1739–1758

    Article  CAS  Google Scholar 

  33. Liu L, Zhao H, Shi L, Lan M, Zhang H, Yu C (2017) Enzyme-and metal-free electrochemical sensor for highly sensitive superoxide anion detection based on nitrogen doped hollow mesoporous carbon spheres. Electrochim Acta 227:69–76

    Article  CAS  Google Scholar 

  34. Xia Y, Zhang W, Xiao Z, Huang H, Zeng H, Chen X, Chen F, Gan Y, Tao X (2012) Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries. J Mater Chem 22:9209–9215

    Article  CAS  Google Scholar 

  35. Jahanbakhshi M (2017) Mesoporous carbon foam, synthesized via modified Pechini method, in a new dispersant of Salep as a novel substrate for electroanalytical determination of epinephrine in the presence of uric acid. Mater Sci Eng C 70:544–551

    Article  CAS  Google Scholar 

  36. Zhu J, Li H, Wang Y, Wang Y, Yan J (2021) Preparation of Ag NPs and its multifunctional finishing for cotton fabric. Polymers (Basel) 13:1338

    Article  CAS  PubMed  Google Scholar 

  37. Chew SY, Ng SH, Wang J, Novák P, Krumeich F, Chou SL, Chen J, Liu HK (2009) Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon N Y 47:2976–2983

    Article  CAS  Google Scholar 

  38. Habibi B, Jahanbakhshi M (2014) A novel nonenzymatic hydrogen peroxide sensor based on the synthesized mesoporous carbon and silver nanoparticles nanohybrid. Sensors Actuators B Chem 203:919–925

    Article  CAS  Google Scholar 

  39. Liu Z, Xing Z, Zu Y, Tan S, Zhao L, Zhou Z, Sun T (2012) Synthesis and characterization of L-histidine capped silver nanoparticles. Mater Sci Eng C 32:811–816

    Article  CAS  Google Scholar 

  40. Wang H, Sun J, Lu L, Yang X, Xia J, Zhang F, Wang Z (2020) Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal Chim Acta 1094:18–25

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H, Wang Z, Zhang Q, Wang F, Liu Y (2019) Ti3C2 MXenes nanosheets catalyzed highly efficient electrogenerated chemiluminescence biosensor for the detection of exosomes. Biosens Bioelectron 124:184–190

    Article  PubMed  Google Scholar 

  42. Vajhadin F, Mazloum-Ardakani M, Shahidi M, Moshtaghioun SM, Haghiralsadat S, Ebadi A, Amini A (2022) MXene-based cytosensor for the detection of HER2-positive cancer cells using CoFe2O4@ Ag magnetic nanohybrids conjugated to the HB5 aptamer. Biosens Bioelectron 195:113626

    Article  CAS  PubMed  Google Scholar 

  43. He L, Li Z, Guo C, Hu B, Wang M, Zhang Z, Du M (2019) Bifunctional bioplatform based on NiCo Prussian blue analogue: label-free impedimetric aptasensor for the early detection of carcino-embryonic antigen and living cancer cells. Sensors Actuators B Chem 298:126852

    Article  CAS  Google Scholar 

  44. Rahmati Z, Roushani M, Hosseini H (2021) Thionine functionalized hollow N-doped carbon nanoboxes: as a high-performance substrate for fabrication of label-free electrochemical aptasensor toward ultrasensitive detection of carcinoembryonic antigen. J Electroanal Chem 903:115858

    Article  CAS  Google Scholar 

  45. Li J, Zhao L, Wang W, Liu Y, Yang H, Kong J, Si F (2021) Polymer-functionalized carbon nanotubes prepared via ring-opening polymerization for electrochemical detection of carcinoembryonic antigen. Sensors Actuators B Chem 328:129031

    Article  CAS  Google Scholar 

  46. Wang D, Li Y, Lin Z, Qiu B, Guo L (2015) Surface-enhanced electrochemiluminescence of Ru@ SiO2 for ultrasensitive detection of carcinoembryonic antigen. Anal Chem 87:5966–5972

    Article  CAS  PubMed  Google Scholar 

  47. Huang X, Ni Z, Su H, Shang Y, Liu H, He Y, Meng H, Dong Y (2021) Cellulose nanocrystalline and sodium benzenesulfonate-doped polypyrrole nano-hydrogel/Au composites for ultrasensitive detection of carcinoembryonic antigen. New J Chem 45:5551–5560

    Article  CAS  Google Scholar 

  48. Li H, Shi L, Sun D, Li P, Liu Z (2016) Fluorescence resonance energy transfer biosensor between upconverting nanoparticles and palladium nanoparticles for ultrasensitive CEA detection. Biosens Bioelectron 86:791–798

    Article  CAS  PubMed  Google Scholar 

  49. Mazloum-Ardakani M, Tavakolian-Ardakani Z, Sahraei N, Moshtaghioun SM (2019) Fabrication of an ultrasensitive and selective electrochemical aptasensor to detect carcinoembryonic antigen by using a new nanocomposite. Biosens Bioelectron 129:1–6

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors wish to thank the Iran National Science Foundation (INSF) and Yazd University Research Council for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mazloum-Ardakani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1266 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseynidokht, F., Mazloum-Ardakani, M., Sahraei, N. et al. Highly sensitive electrochemical detection of carcinoembryonic antigen by silver nanoparticles/carboxylated single-walled carbon nanotubes embedded in mesoporous carbon foam. J Solid State Electrochem 28, 377–387 (2024). https://doi.org/10.1007/s10008-023-05785-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-023-05785-3

Keywords

Navigation