Skip to main content

Advertisement

Log in

Application of imidazolium-based ionic liquids as electrolytes for supercapacitors with superior performance at a wide temperature range

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A potential new family of adaptable, ecologically acceptable solvent systems are ionic liquids (ILs). This study is the first to offer a new method for using imidazolium-based ILs as affordable, anti-corrosion electrolytes for activated carbon-based electrochemical capacitors (ECs). In this context, the ILs 1-hexyl 3-methylimidazolium bromide ([HMIM]Br) and 1-ethyl 3-methylimidazolium ethyl sulfate ([EMIM]ES) were synthesized. In the region of ambient temperature up to 105 °C, significant features including viscosity, electrical conductivity, and electrochemical tests were investigated. The symmetric ECs in imidazolium-based electrolytes, which display exceptional electrochemical stability at a maximum voltage of up to 3.5 V, deliver high energy. At room temperature, the specific capacitance of the electrolyte containing IL [HMIM]Br drops to 87 F g−1 (with an energy density of 37 Wh kg−1) from 174 F g−1 (with an energy density of 74 Wh kg−1) under 105 °C. In addition, the supercapacitor made using IL [HMIM]Br retained 90.6% of its capacity up to 10,000 cycles at 105 °C. The findings have significant ramifications for extending the use of eco-friendly, non-toxic, and affordable electrolytes for high-performance ECs with broad voltage windows and improved longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652

  2. Pettersson F, Keskinen J, Remonen T, von Hertzen L, Jansson E, Tappura K, Zhang Y, Wilén C-E, Österbacka R (2014) Printed environmentally friendly supercapacitors with ionic liquid electrolytes on paper. J Power Sources 271:298–304

    Article  CAS  Google Scholar 

  3. Zhou Y, Qi H, Yang J, Bo Z, Huang F, Islam MS, Lu X, Dai L, Amal R, Wang CH (2021) Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ Sci 14(4):1854–1896

    Article  CAS  Google Scholar 

  4. Liu B, Wang X, Chen Y, Xie H, Zhao X, Nassr AB, Li Y (2023) Honeycomb carbon obtained from coal liquefaction residual asphaltene for high-performance supercapacitors in ionic and organic liquid-based electrolytes. J Energy Storage 68:107826

  5. Zhang LL, Zhou R, Zhao X (2010) Graphene-based materials as supercapacitor electrodes. J Mater Chem 20(29):5983–5992

    Article  CAS  Google Scholar 

  6. Fic K, Płatek A, Piwek J, Menzel J, Ślesiński A, Bujewska P, Galek P, Frąckowiak E (2019) Revisited insights into charge storage mechanisms in electrochemical capacitors with Li2SO4-based electrolyte. Energy Storage Mater 22:1–14

    Article  Google Scholar 

  7. Zhang X, Wang Y, Yuan X, Shen Y, Lu Z, Wang Z (2022) Adaptive dynamic surface control with disturbance observers for battery/supercapacitor-based hybrid energy sources in electric vehicles, IEEE Trans Transp Electrification

  8. Lu C, Zhou H, Li L, Yang A, Xu C, Ou Z, Wang J, Wang X, Tian F (2022) Split-core magnetoelectric current sensor and wireless current measurement application. Measurement 188:110527

    Article  Google Scholar 

  9. Li M, Wang C, Chen Z, Xu K, Lu J (2020) New concepts in electrolytes. Chem Rev 120(14):6783–6819

    Article  CAS  PubMed  Google Scholar 

  10. Borodin O, Ren X, Vatamanu J, von Wald Cresce A, Knap J, Xu K (2017) Modeling insight into battery electrolyte electrochemical stability and interfacial structure. Acc Chem Res 50(12):2886–2894

  11. Lu M (2013) Supercapacitors: materials, systems, and applications. John Wiley & Sons

  12. Feng J, Wang Y, Xu Y, Sun Y, Tang Y, Yan X (2021) Ion regulation of ionic liquid electrolytes for supercapacitors. Energy Environ Sci 14(5):2859–2882

    Article  CAS  Google Scholar 

  13. Zhang X, Tang Y, Zhang F, Lee CS (2016) A novel aluminum–graphite dual-ion battery. Adv Energy Mater 6(11):1502588

    Article  Google Scholar 

  14. Mirzaei-Saatlo M, Asghari E, Shekaari H, Pollet B, Vinodh R (2023) Performance of ethanolamine-based ionic liquids as novel green electrolytes for the electrochemical energy storage applications. Electrochimica Acta 143499

    Article  Google Scholar 

  15. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H-M (2018) Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat Chem 10(6):667–672

    Article  CAS  PubMed  Google Scholar 

  16. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854

    Article  CAS  PubMed  Google Scholar 

  17. Pech D, Brunet M, Taberna P-L, Simon P, Fabre N, Mesnilgrente F, Conédéra V, Durou H (2010) Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor. J Power Sources 195(4):1266–1269

    Article  CAS  Google Scholar 

  18. Earle MJ, Seddon KR (2000) Ionic liquids. Green solvents for the future. Pure Appl Chem 72(7):1391–1398

  19. Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39(21):3772–3789

    Article  CAS  Google Scholar 

  20. Du S, Yin J, Xie H, Sun Y, Fang T, Wang Y, Li J, Xiao D, Yang X, Zhang S (2022) Auger scattering dynamic of photo-excited hot carriers in nano-graphite film. Appl Phys Lett 121(18)

  21. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084

    Article  CAS  PubMed  Google Scholar 

  22. Hough WL, Rogers RD (2007) Ionic liquids then and now: from solvents to materials to active pharmaceutical ingredients. Bull Chem Soc Jpn 80(12):2262–2269

    Article  CAS  Google Scholar 

  23. Minami I (2009) Ionic liquids in tribology. Molecules 14(6):2286–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim KS, Choi S, Demberelnyamba D, Lee H, Oh J, Lee BB, Mun SJ (2004) Ionic liquids based on N-alkyl-N-methylmorpholinium salts as potential electrolytes. Chem Commun (7):828–829

  25. Greaves TL, Drummond CJ (2008) Protic ionic liquids: properties and applications. Chem Rev 108(1):206–237

    Article  CAS  PubMed  Google Scholar 

  26. Greaves TL, Weerawardena A, Fong C, Krodkiewska I, Drummond CJ (2006) Protic ionic liquids: solvents with tunable phase behavior and physicochemical properties. J Phys Chem B 110(45):22479–22487

    Article  CAS  PubMed  Google Scholar 

  27. Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of Δp K a from aqueous solutions. J Am Chem Soc 125(50):15411–15419

    Article  CAS  PubMed  Google Scholar 

  28. Xu W, Angell CA (2003) Solvent-free electrolytes with aqueous solution-like conductivities. Science 302(5644):422–425

    Article  CAS  PubMed  Google Scholar 

  29. Liu Y, Qin J, Lu L, Xu J, Su X (2023) Enhanced microwave absorption property of silver decorated biomass ordered porous carbon composite materials with frequency selective surface incorporation. Int J Miner Metall Mater 30(3):525–535

    Article  Google Scholar 

  30. Timperman L, Galiano H, Lemordant D, Anouti M (2011) Phosphonium-based protic ionic liquid as electrolyte for carbon-based supercapacitors. Electrochem Commun 13(10):1112–1115

    Article  CAS  Google Scholar 

  31. Qiu C, Jiang L, Gao Y, Sheng L (2023) Effects of oxygen-containing functional groups on carbon materials in supercapacitors: a review. Mater Des 111952

  32. Lee AA, Vella D, Perkin S, Goriely A (2015) Are room-temperature ionic liquids dilute electrolytes? J Phys Chem Lett 6(1):159–163

    Article  CAS  PubMed  Google Scholar 

  33. Lewandowski A, Świderska-Mocek A (2009) Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J Power Sources 194(2):601–609

    Article  CAS  Google Scholar 

  34. Li H, Wang Y, Jiang F, Li M, Xu Z (2023) A dual-function [Ru (bpy) 3] 2+ encapsulated metal organic framework for ratiometric Al 3+ detection and anticounterfeiting application. Dalton Trans 52(12):3846–3854

    Article  CAS  PubMed  Google Scholar 

  35. Ashassi-Sorkhabi H, Kazempour A, Moradi-Alavian S, Asghari E, Lamb JJ (2023) 3D nanostructured nickel film supported to a conducting polymer as an electrocatalyst with exceptional properties for hydrogen evolution reaction. Int J Hydrogen Energy

    Article  Google Scholar 

  36. Das HT, Dutta S, Das N, Das P, Mondal A, Imran M (2022) Recent trend of CeO2-based nanocomposites electrode in supercapacitor: a review on energy storage applications. J Energy Storage 50:104643

  37. Yu H, Chen D, Li Q, Yan C, Jiang Z, Zhou L, Wei W, Ma J, Ji X, Chen Y (2023) In situ construction of anode–molecule interface via lone-pair electrons in trace organic molecules additives to achieve stable zinc metal anodes. Adv Energy Mater 2300550

  38. Rawat S, Mishra RK, Bhaskar T (2022) Biomass derived functional carbon materials for supercapacitor applications. Chemosphere 286:131961

    Article  CAS  PubMed  Google Scholar 

  39. Yu H, Chen D, Ni X, Qing P, Yan C, Wei W, Ma J, Ji X, Chen Y, Chen L (2023) Reversible adsorption with oriented arrangement of a zwitterionic additive stabilizes electrodes for ultralong-life Zn-ion batteries, Energy Environ Sci

  40. Fan Z, Ren J, Zhang F, Gu T, Zhang S, Ren R-P, Lv Y-K (2022) A flexible and self-healing supercapacitor based on activated carbon cloth/MnO2 composite. J Mater Sci 57(2):1281–1290

    Article  CAS  Google Scholar 

  41. Loganathan NN, Perumal V, Pandian BR, Atchudan R, Edison TNJI, Ovinis M (2022) Recent studies on polymeric materials for supercapacitor development. J Energy Storage 49:104149

  42. Liu W, Zhao Q, Yu H, Wang H, Huang S, Zhou L, Wei W, Zhang Q, Ji X, Chen Y (2023) Metallic particles-induced surface reconstruction enabling highly durable zinc metal anode. Adv Funct Mater 2302661

  43. Mirheydari SN, Barzegar-Jalali M, Faraji S, Shekaari H, Martinez F, Jouyban A (2020) Volumetric and acoustic properties of ionic liquid, 1-hexyl-3-methylimidazolium bromide in 1-hexanol, 1-heptanol and 1-octanol at T=(298.15–328.15) K. Phys Chem Liquids 58(4):545–558

  44. Shekaari H, Zafarani-Moattar MT, Faraji S, Mokhtarpour M (2020) Prediction of vapor pressure and density for nonaqueous solutions of the ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate using PC-SAFT equation of state. Fluid Phase Equilib 506:112320

    Article  CAS  Google Scholar 

  45. Vila J, Ginés P, Pico J, Franjo C, Jiménez E, Varela L, Cabeza O (2006) Temperature dependence of the electrical conductivity in EMIM-based ionic liquids: evidence of Vogel–Tamman–Fulcher behavior. Fluid Phase Equilib 242(2):141–146

    Article  CAS  Google Scholar 

  46. Wang W, Sabugaa M, Chandra S, Asmara YP, Abd Alreda B, Ulloa N, Elmasry Y, Kadhim MM (2023) Choline chloride-based deep eutectic solvents as electrolytes for wide temperature range supercapacitors. J Energy Storage 71:108141

  47. Dou Q, Lei S, Wang D-W, Zhang Q, Xiao D, Guo H, Wang A, Yang H, Li Y, Shi S (2018) Safe and high-rate supercapacitors based on an “acetonitrile/water in salt” hybrid electrolyte. Energy Environ Sci 11(11):3212–3219

    Article  CAS  Google Scholar 

  48. Zhong M, Tang QF, Zhu YW, Chen XY, Zhang ZJ (2020) An alternative electrolyte of deep eutectic solvent by choline chloride and ethylene glycol for wide temperature range supercapacitors. J Power Sources 452:227847

    Article  CAS  Google Scholar 

  49. Liu W, Zhao C, Zhou Y, Xu X (2022) Modeling of vapor-liquid equilibrium for electrolyte solutions based on COSMO-RS interaction. J Chem 2022:1–13

    Article  CAS  Google Scholar 

  50. Mahanta U, Choudhury S, Venkatesh RP, SarojiniAmma S, Ilangovan S, Banerjee T (2019) Ionic-liquid-based deep eutectic solvents as novel electrolytes for supercapacitors: COSMO-SAC predictions, synthesis, and characterization. ACS Sustain Chem Eng 8(1):372–381

    Article  Google Scholar 

  51. Wong SI, Lin H, Ma T, Sunarso J, Wong BT, Jia B (2022) Binary ionic liquid electrolyte design for ultrahigh-energy density graphene-based supercapacitors. Mater Rep Energy 2(2):100093

  52. Ortega PF, Santos Jr GA, Trigueiro JP, Silva GG, Quintanal N, Blanco C, Lavall RL, Santamaría R (2020) Insights on the behavior of imidazolium ionic liquids as electrolytes in carbon-based supercapacitors: an applied electrochemical approach. J Phys Chem C 124(29):15818–15830

  53. Sillars FB, Fletcher SI, Mirzaeian M, Hall PJ (2012) Variation of electrochemical capacitor performance with room temperature ionic liquid electrolyte viscosity and ion size. Phys Chem Chem Phys 14(17):6094–6100

    Article  CAS  PubMed  Google Scholar 

  54. Thangavel R, Kannan AG, Ponraj R, Thangavel V, Kim D-W, Lee Y-S (2018) High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. J Power Sources 383:102–109

    Article  CAS  Google Scholar 

  55. Kurig H, Vestli M, Jänes A, Lust E (2011) Electrical double layer capacitors based on two 1-ethyl-3-methylimidazolium ionic liquids with different anions. Electrochem Solid-State Lett 14(8):A120

    Article  CAS  Google Scholar 

  56. Fic K, Gorska B, Bujewska P, Béguin F, Frackowiak E (2019) Selenocyanate-based ionic liquid as redox-active electrolyte for hybrid electrochemical capacitors. Electrochim Acta 314:1–8

    Article  CAS  Google Scholar 

  57. Mahanta U, Venkatesh RP, Sujatha S, Ilangovan S, Banerjee T (2019) Imidazolium based ionic liquids as electrolytes for energy efficient electrical double layer capacitor: insights from molecular dynamics and electrochemical characterization. J Solution Chem 48:1119–1134

    Article  CAS  Google Scholar 

  58. Maiti S, Pramanik A, Mahanty S (2015) Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO 2 hollow spheres as electrochemical supercapacitor. RSC Adv 5(52):41617–41626

    Article  CAS  Google Scholar 

  59. Mohsenipour A, Mozaffarian M, Pazuki G, Naji L (2022) Fabrication of high performance supercapacitors based on ethyl methyl imidazolium bis (trifluoromethylsulfonyl) imide (EMIMTFSI)-decorated reduced graphene oxide (rGO). J Alloy Compd 892:162093

    Article  CAS  Google Scholar 

  60. Chen X, Han J, Lv X, Lv W, Pan Z, Luo C, Zhang S, Lin Q, Kang F, Yang Q-H (2019) Dense yet highly ion permeable graphene electrodes obtained by capillary-drying of a holey graphene oxide assembly. J Mater Chem A 7(20):12691–12697

    Article  CAS  Google Scholar 

  61. Song Z, Duan H, Li L, Zhu D, Cao T, Lv Y, Xiong W, Wang Z, Liu M, Gan L (2019) High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Cheml Eng J 372:1216–1225

Download references

Acknowledgements

The authors acknowledge the facilities from their universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yihua Liu or Subhash Chandra.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 79 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Adel, H., Mohealdeen, S.M. et al. Application of imidazolium-based ionic liquids as electrolytes for supercapacitors with superior performance at a wide temperature range. J Solid State Electrochem (2023). https://doi.org/10.1007/s10008-023-05763-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10008-023-05763-9

Keywords

Navigation